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Abstract

This study was carried out to predict the zooplankton 
density in the Cip reservoir (Elazığ) with an artificial 
neural network, using some water quality parameters. 
The plankton samples were collected monthly from 
Cip Reservoir in 2021- 2022, using a standard plankton 
net from three stations.  Water temperature, dissolved 
oxygen, pH, electrical conductivity, secchi disk, alkalinity, 
total nitrogen and total phosphorus were measured. The 
actual values of zooplankton density and results obtained 
from the artificial neural networks were compared. Mean 
absolute percent error (MAPE) values were calculated 
with actual values and ANNs values. ANNs values were 
determined to be close to the real data. MAPE percentage 
value at the first station was determined as 1.143 for Rotifer, 
0.118 for Cladocera, and 0.141 for Copepoda. The MAPE 
percentage value at the second station was determined 
as 0.941 for Rotifer, 0.377 for Cladocera, and 0.185 for 
Copepoda. The MAPE percentage value at the third station 
was determined as 0.342 for Rotifer, 0.557 for Cladocera, 
and 0.301 for Copepoda. In the present study, it has been 
seen that artificial neural networks with a learning feature 
are successful in predicting zooplankton densities in an 
aquatic environment. It can be concluded from the study 
that ANNs are a powerful tool for understanding their 
relationships with the environment
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1. Introduction

Plankton are considered to be the most important 
component of life on earth. They are very sensitive 
to changes in pH level, salinity, temperature, and 
nutrient concentration etc. These are generally 
small-sized organisms with a short life cycle and a 
strong susceptibility to environmental conditions. 
Zooplankton affect the productivity of the system 
as they cause grazing and nutrient cycling in the 
systems (Banse 1995). In addition, if the zooplankton 
density is high, it can also be associated with high fish 
concentrations (Maravelias & Reid 1997; Aoki & Komatsu 
1997).

Zooplankton play a wide range of essential roles 
in an aquatic ecosystem. A varied assemblage of 
zooplankton in an  aquatic community  is usually an 
indicator of its health. They can serve as an indicator 
of  eutrophication  (Attayde & Bozelli 1998;  Sousa et 
al. 2008). Zooplankton are essential in transferring 
nutrients and energy between the autotrophs and 
higher  trophic levels. Certain zooplankton groups 
also respond to changes in the environment as well 
as the physico-chemical attributes of the system, in 
addition to showing diel patterns, including vertical 
migration (Dini & Carpenter 1992). The physicochemical 
conditions of the environment affect the abundance, 
presence, and distribution of organisms in a habitat. 
The organism has ecological niches in which some 
environmental features are characterized by special 
forms to survive in its habitat (Amoros et al. 1987).

From a biological viewpoint, patterns of species 
existence and the abundance of species usually show 
non-linear complexities in their relations with the 
habitat spatial heterogeneity and interactions with 
other species.  For these reasons,  artificial neural 
networks  (ANNs) can be an attractive alternative as 
a tool for analyzing and modeling ecological data, 
since they can take account of specific factors such as 
non-linearity, adaptation and generalization  (Schleiter 
et al. 1999). Artificial neural networks can learn and 
generalize by experimenting with data. Therefore, it 
has a non-linear structure. It has also been found that it 
gives better results when compared to linear methods 
(Sharda & Patil 1992). In this context, the method can 
detect nonlinear relationships without the need for any 
assumptions (Kaastra & Boyd 1996). It also allows the 
use of an unlimited number of variables. 

In aquatic ecology, construction of a model of 
zooplankton behaviour is particularly important 
because of its enormous ecological relevance. 
Zooplankton, which are the main consumers of 
phytoplankton, provide the link between the 
lower levels of the food chain and the fish, birds, 

and mammals at the upper levels. Therefore, this is 
determined in zooplankton abundance or species 
composition. These changes are indicative of important 
changes affecting primary production (primary 
productivity) in the aquatic habitat (Pınto-Coelho 1998). 
In aquatic ecology, ANNs are widely used to detect 
algae growth and relationships between environmental 
variables, macro-invertebrates, and fish (Mastrorillo et 
al. 1997; Reyjol et al. 2001; Olden & Jackson 2001; Hoang 
et al. 2001).

However, construction of a model of zooplankton 
behaviour is particularly important because of their 
enormous ecological relevance. Zooplankton occupy 
an intermediary position in the food chain and play a 
part in many ecological processes, such as energy flow 
and nutrient cycling (Pinto-Coelho 1998) and also act 
directly on “bottom-up” and “top-down” mechanisms, 
thereby promoting changes in the environmental 
trophic structure (Carpenter et al. 1985). The focus 
of this present study is to develop modeling for the 
predictive use of zooplankton dynamics by ANNs, to 
determine (rotifera, cladocera, copepoda) their density 
using some environmental variables to reveal the 
stability of the processes that relate environmental 
variables to zooplankton. In order to achieve these 
goals, the data of the Cip reservoir was used. In this 
study, we investigated whether some water quality 
parameters would be successful in predicting 
zooplankton density.

2. Materials and methods

2.1. Study site

Cip reservoir was built in 1965 for irrigation 
purposes on the Cip Stream in Elazig. The body 
volume of the its, which is an earth body fill type, is 
446,000 m³, and its height from the stream bed is 
23 meters. The reservoir volume is 7 hm³ at normal 
water level, and the reservoir area is 1.10 km² at 
normal water level. It provides irrigation to an area of 
1,100 hectares. The plankton samples were collected 
monthly from Cip Reservoir in 2021- 2022, using a 
standard plankton net (55-μm mesh size) from three 
stations (Figure 1). The samples were fixed in 4% 
formalin, analysed under an inverted microscope 
(GMBH D-6330 diavert inverted microscope, Earnst 
Leitz Ltd., Canada) and identified under a compound 
microscope (Nikon Eclipse E 100, Nikon Instruments 
Inc., Japan). Water temperature, dissolved oxygen, pH, 
electrical conductivity and secchi disk were measured 
in-situ with the YSI professional plus brand meter. 
Alkalinity was also determined by the titrimetric 
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method. Total phosphorus and total nitrogen 
were determined by analyses using Merck test kits 
(spectrophotometric) and the Water and Wastewater 
Analysis Photometer Merck Spectroquant Nova 60 A. 
Counting of zooplankton species was done in petri 
dishes with 5-ml sub-samples. A minimum of 200 
individuals were quantified per replicate, and the final 
density was converted to individuals per cubic metre. 
Monthly changes of total zooplankton at stations were 
recorded.

2.2. Zooplankton community composition

Zooplanktonic organisms are a food source for 
invertebrates, fish, and birds. Nearly all freshwater fish 
are planktivorous in their early life. Planktivorous fish 
feed both small zooplankton and large phytoplankton 
(Horne & Goldman 1994). Factors affecting the 
horizontal and vertical distribution of zooplankton 
in water are the physical and chemical properties of 
water, wind, currents, streams entering the lake, depth, 
season, heat, light, nutrients and predators. When the 
light is high, the plankton descend from the surface 

and rise to the surface when the light is low. Since they 
cause the viscosity and density of water to change with 
temperature, living things are the best for themselves. 
Zooplankton gravitate towards the layer with the 
appropriate temperature (Tanyolaç 2009). Zooplankton 
density can be mentioned as an indicator of healthy 
water quality (Karjalainen et al. 1996; Moss et al. 1997; 
Muylaert et al. 2006).

This is connected with the transfer of energy 
from zooplankton producers, which represent the 
second trophic level in the food web, to heterotrophs 
with higher trophic levels. (Deivanai et al. 2004; 
Ismail & Mohd Adnan 2016). They respond quickly to 
physical and chemical changes in their environment. 
Previous studies have shown that different groups of 
zooplankton are good indicators of eutrophication: 
Attayde & Bozelli (1998); Burns & Galbraith (2007); 
Pinel-Alloul et al. (1990); Sousa et al (2008); Saler (2017); 
Bulut and Saler (2018); Bulut and Saler (2020); Bulut and 
Saler (2019). Studies of the effects of environmental 
factors and the density of zooplankton taxa provide 
information about the functioning of water systems 
(Bulut & Saler 2020).

Figure 1
Coordinates of Cip Reservoir
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3.3. Determination of input variables

Zooplankton are very sensitive to changes in their 
environment (Legendre & Demers 1984). Therefore, 
some important predictive parameters that directly 
or indirectly affect the zooplankton habitat in the Cip 
reservoir were selected. The factors that directly affect 
zooplankton in their habitat are water temperature 
and dissolved oxygen. In some seasons, due to the 
increase in flooding, water dilution, changes in nutrient 
and oxygen availability occur, and accordingly, the 
reproduction and metabolic rate of zooplankton are 
affected (Loverde et al. 2009). Electrical conductivity 
and pH, which are measures of production and 
decomposition processes, are variables that indirectly 
affect zooplankton density.

3.4. Artifical neural networks

ANNs methodology, which provides significant 
advantages thanks to many features, is widely 
used in the field of predictive modeling as in other 
fields. Artificial Neural Networks (ANNs) are artificial 
information processing models, created by imitating 
the work of the human brain and taking advantage 
of the physiology of the brain. ANNs are some of the 
most successful new approaches in solving problems 
in recent years (Haykin 1994; Sagıroglu et al. 2003).

The learning feature of ANNs is one of the most 
important features that attract the attention of 
researchers because the ability to produce solutions 
for events that have never been seen before by 
learning the relationship between inputs and 
outputs about any event, whether linear or not, 
from existing examples, which forms the basis of 
intelligent behaviour in ANNs. A neural network stores 
information, makes it useful and consists of simple 
units. It is a parallel distributed processor. Artificial 
neurons are simply clustered in ANNs. This clustering is 
done in layers, and then these layers are related to one 
another. Basically, all neural networks have a similar 
structure. Some neurons are connected to the outside 
to receive inputs and some neurons to transmit 
outputs. All the remaining neurons are in the hidden 
layers, that is, they only have connections within the 
network (Anderson & McNeill 1992).

MATLAB’s Neural Network Toolbox (Ver R2016a) 
was used for ANNs. ANNs created in MATLAB software 
consist of three parts. These are “training”, “testing” 
and “validation”. The proposed model is divided 
into three layers: input, output and hidden layers. In 
addition, the model consisting of 31 neurons (8 in the 
input layer, 3 in the output layer and 20 in the hidden 
layer) is designed as fully connected feed-forward-
feedback. The model structure of the system is shown 
in Figure 2.

Figure 2
Model Structure of ANNs
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In forward propagation, the temperature, pH, 
dissolved oxygen, conductivity, secchi disk, alkalinity, 
total nitrogen, total phosphorus data received in 
the input layer are taken from the input layer and 
transmitted to the hidden layer by passing through 
the activation function. In the hidden layer, new 
values from the previous layer are reactivated and 
transmitted to the output layer. Error rates are 
calculated between the targeted values and the new 
values obtained in the output layer. If the calculated 
error rate is greater than 1e-7, the back propagation 
algorithm is run. If the errors are reflected in the 
weight values in the hidden layer and input layers, 
new weight values are created. Weight values and 
bias values are updated according to Equation 1 and 
Equation 2. The mathematical equation of the neuron 
model is as follows (Eq. 3) (Krenker et al. 2011): (yi (k) 
is the output value at discrete time k; F is a transfer 
function; wi(k) is the weight value at discrete time k, 
where i goes from 0 to m; xi(k) is where i goes from 
0 to m input value at discrete time k, b bias). MAPE 
was used to compare ANNs and other methods. The 
smaller the MAPE values, the closer the estimated 
values to the true values (Benzer et al. 2017). MAPE 
is as in the following equation (Eq. 4). Yi is the actual 
observation value; ei is the difference between the 
true value and the predicted value; n is the total 
number of observations. 

(Eq. 1)

(Eq.  2)

(Eq.  3)

(Eq.  4)

4. Results

4.1 Some Water Quality Parameters of The Study 
Field 

In the study, some water quality parameters such 
as water temperature, pH, dissolved oxygen, electrical 
conductivity, secchi disk, alkalinity, total nitrogen, and 
total phosphorus were measured during the sampling 
in the field. Accordingly, it was determined that the 
highest water temperature was 27.8°C in summer at 

the 2nd station, and the lowest was 3.2°C in the winter 
at the 2nd station. The highest pH was 8.5 in winter; 
the lowest 7.4 in summer at the second station. The 
maximum dissolved oxygen concentration was 8.8 
mg l-1 at the 1st station in winter, while the lowest 
concentration was 6.1 (mg l-1) at the 2nd station. 
Conductivity in the maximum reading was 536 
(µS cm-1) in summer at the 3rd station; the lowest 
reading was 305 (µS cm-1) in winter at the 2nd station. 
The highest secchi disk was 48.3 (cm) in summer at the 
1st station; the lowest was 38.2 (cm) in winter at the 3rd 
station. The alkalinity was 320 (mg CaCo3 l

-1) in summer, 
while the lowest was 120 (mg CaCo3 l

-1) in autumn in 
the 3rd station. The highest total nitrogen was 3.4 
(mg N l-1) in summer at the 1st station; the lowest was 
0.2 (mg N l-1) in winter at the 3rd station. The maximum 
total phosphorus was 1.6 mg l-1 at the 1st station in 
summer, while the lowest value was 0.01 (mg l-1) at the 
3rd station in winter (Figure 3).

Zooplankton structure also showed temporal 
changes. On average,  rotifers were the major 
component in all the periods studied; cladocerans and 
copepods were determined during the seasons (Figure 
4).

Actual values of the 1st, 2nd and 3rd station 
zooplankton density (rotifera, cladocera, copepoda) 
and artificial neural networks values are given 
according to the months in Table 1, Table 2, and Table 
3. The actual values of zooplankton density and the 
results obtained from the artificial neural networks 
were compared. These values were calculated one 
by one. Mean absolute percent error (MAPE) values   
were calculated with actual values   and ANNs values. 
ANNs values were determined to be close to the real 
data. When Table 1 is examined, MAPE (%) value was 
determined as 1.143 for Rotifer, 0.118 for cladocera, and 
0.141 for copepoda. When Table 2 is examined, MAPE 
(%) value was determined as 0.941 for Rotifer, 0.377 
for cladocera, and 0.185 for copepoda. When Table 3 is 
examined, MAPE (%) value was determined as 0.342 for 
Rotifer, 0.557 for cladocera, and 0.301 for copepoda.

ANNs results were obtained using training data 
and artificial neural networks. ANNs results regarding 
zooplankton densities for the 1st station, 2nd station, 
and 3rd station are given in Figure 5, Figure 6, and 
Figure 7. The best fit between targets and outputs is 
determined by the linear regression line. The R value 
determines the relationship between these targets 
and outputs. The targeted output R value is calculated 
as 0.99716 for training, 0.92436 for validation, 0.99642 
for testing, and 0.94196 for all in the 1st station. The 
targeted output R value is calculated as 0.95697 for 
training, 0.99126 for validation, 0.52772 for testing, and 
0.95631 for all in the 2nd station.  The targeted output 
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Figure 3
Some water quality parameters of study fi eld
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Figure 4
Monthly changes of total zooplankton in Cip Reservoir at the 1st, 2nd, and 3rd station

Table 1
Comparison with artifi cial neural networks of real values of zooplankton density for the 1st station

Month
roti fer cladocera copepeda

Real Data ANNs MAPE (%) Real Data ANNs MAPE (%) Real Data ANNs MAPE (%)

September 68273 68272 0.001 509 509 0.000 0 0.002 0.000

October 50950 49886 2.088 4585 4585 0.000 2038 2038 0.000

November 35667 34730 2.627 1019 1019 0.000 5605 5604 0.018

December 10190 10188 0.019 0 2.262 0.000 0 0.002 0.000

January 3973 3973 0.000 0 0.061 0.000 509 508 0.196

February 17323 17316 0.040 0 0.037 0.000 1528 1528 0.000

March 30061 30056 0.016 0 0.688 0.000 0 1.837 0.000

April 27515 28315 2.907 1019 1018 0.098 0 0.000 0.000

May 43817 43817 0.000 9681 9680 0.010 203 206 1.478

June 58533 58512 0.036 17833 17832 0.006 0 0.000 0.000

July 17324 18359 5.974 23948 23947 0.004 0 1.939 0.000

August 8662 8663 0.012 2548 2581 1.295 0 0.182 0.000

Average MAPE (%) 1.143 0.118 0.141
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R value is calculated as 0.91557 for training, 0.93203 for 
validation, 0.98536 for testing, and 0.92585 for all in the 
3rd station. R values ​​close to 1 indicate the best results 
of the training (Figure 5-7).

Figures (8-10) show the corresponding validation 
checks and the gradient of epochs. For the training 
state of artificial neural networks model, the validation 
checks were attained as 6, at epoch 6 and gradient = 

1668541.3655, and at epoch 10 in the 1st station. For 
the training state of artificial neural networks model, 
the validation checks were attained as 6, at epoch 
6 and gradient = 455785.4862, at epoch 6 in the 
2nd station. For the training state of artificial neural 
networks model, the validation checks was attained 
as 6, at epoch 6 and gradient = 3483291.2888, and at 
epoch 6 in the 3rd station.

Table 2
Comparison with artificial neural networks of real values of zooplankton density for the 2nd station

Month
rotifer cladocera copepeda

Real Data ANNs MAPE (%) Real Data ANNs MAPE (%) Real Data ANNs MAPE (%)

September 33113 32992 0.365 509 506 0.589 0 0.000 0.000

October 27510 27436 0.269 4585 4526 1.287 3057 3057 0.000

November 15285 15550 1.733 1019 1019 0.000 3057 3057 0.000

December 9681 9622 0.609 0 23.012 0.000 410 410 0.000

January 3260 3298 1.166 0 17.785 0.000 509 509 0.000

February 5605 5596 0.161 0 62.318 0.000 9171 9196 0.273

March 5604 5521 1.481 509 507 0.393 1224 1224 0.000

April 3057 3056 0.033 3057 3057 0.000 0 0.001 0.000

May 8151 8364 2.613 7132 7047 1.192 0 0.000 0.000

June 14776 14773 0.020 12942 12917 0.193 205 209 1.951

July 4076 4176 2.453 12738 12627 0.871 0 23.51 0.000

August 1019 1015 0.393 0 12588 0.000 509 509 0.000

Average MAPE (%) 0.941 0.377 0.185

Table 3
Comparison with artificial neural networks of real values of zooplankton density for the 3rd station

Month
rotifer cladocera copepeda

Real Data ANNs MAPE (%) Real Data ANNs MAPE (%) Real Data ANNs MAPE (%)

September 28532 28580 0.168 203 208 2.463 0 0.043 0.000

October 31080 31081 0.003 3567 3596 0.813 1019 1018 0.098

November 15489 15536 0.303 509 509 0.000 4076 4025 1.251

December 13247 13218 0.219 203 206 1.478 509 508 0.196

January 3770 3774 0.106 0 0.958 0.000 509 509 0.000

February 16814 16839 0.149 509 501 1.572 203 204 0.493

March 27543 27169 1.358 509 508 0.196 509 509 0.000

April 23438 23439 0.004 1019 1018 0.098 203 201 0.985

May 36175 36132 0.119 8662 8661 0.011 1019 1018 0.098

June 37705 37665 0.106 7134 7133 0.014 203 203 0.000

July 12738 12608 1.020 11210 11209 0.009 0 0.228 0.000

August 9681 9631 0.516 3567 3566 0.028 203 202 0.493

Average MAPE (%) 0.342 0.557 0.301
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Figure 5
Training, validation, testing and all data results of artificial neural networks for the 1st station

Figure 6
Training, validation, testing and all data results of artificial neural networks for the 2nd station
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Figure 7
Training, validation, testing and all data results of artificial neural networks for the 3rd station

Figure 8
Artificial neural networks training state at the 1st station
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Figure 9
Artificial neural networks training state at the 2nd station

Figure 10
Artificial neural networks training state at the 3rd station
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5. Discussion

Densities of zooplankton groups are determined 
by the limnological conditions in the month in which 
they are found; therefore, low zooplankton density 
in a given month is of little importance for prediction 
in the following month. Due to organisms having 
short life cycles, environmental changes affect their 
abundance in the current state of freshwater (Legendre 
& Demers 1984). The present study zooplankton 
density was listed as rotifera, cladocera and copepoda. 
Saler reported that the rotifera was concentrated (Saler 
1995). Zooplankton density is known to determine 
phytoplankton density (Ryding & Rast 1989). Therefore, 
determining the total density of zooplankton, which is 
believed to have the potential to affect phytoplankton 
growth, increases the importance of this study.

ANNs models are based on monthly data of species 
and environmental variables. The amount of data is 
larger in the original data set and computing is time 
consuming. The dimension reduction techniques 
provided improved generalisation performance of 
the ANNs in many, but not all, cases. Selection of 
appropriate preprocessing methods is necessary for 
the achievement of neural modeling (Schleiter et al. 
1999). The use of ANNs in ecology is limited to cases 
where there is a large amount of data and sufficient 
data to be allocated for model validation (Aguilar 
Ibarra et al. 2003). The predictive ability of the models 
tested here can be considered suitable for estimating 
the densities of zooplankton taxa density samples, 
showing the limnological status of the current 
reservoir, even with a small data series for network 
training, suggesting more applications for ANNs. The 
ANNs model was found to be suitable for estimating 
the monthly dynamics of zooplankton groups even in 
short series.

Karul et al (2000) reported that in addition to 
Chlorophyll-a concentrations, neural network models 
can also be used to predict the densities of certain 
species as functions of environmental parameters.

Evaluation of the estimation results were obtained 
from the methods applied in previous studies on 
artificial neural networks. As a result, it provides the 
highest prediction accuracy and the most accurate 
values. It has been seen that the method that gives 
close results is “Artificial Neural Networks” (Benzer 
& Benzer 2018; Ozcan & Serdar 2018; Ozcan & Serdar 
2019; Ozcan 2019).

If models with different unit values are to be 
compared, MAPE statistics are used to eliminate the 
disadvantages that may occur. MAPE is considered 
to be more successful than other criteria as it reveals 
the estimation errors as a percentage among the 

criteria and therefore makes sense on its own. After 
completing learning, it was observed that, at the end 
of the test, we met the values ​​we expected and the 
values ​​predicted by the model, and these values ​​were 
very close to each other. 

Forecast models below MAPE < 10% were classified 
as having a “high accuracy” rating, models with 10% 
< MAPE < 20% were classified as correct prediction 
models, and models above 50% < MAPE were classified 
as “false and faulty” (Lewis 1982). As mentioned before, 
models with a MAPE value below 10% are classified as 
“high accuracy” in the research literature. When Table 1 
is examined, MAPE (%) value was determined as 1.143 
for Rotifer, 0.118 for cladocera, and 0.141 for copepoda. 
When Table 2 is examined, MAPE (%) value was 
determined as 0.941 for Rotifer, 0.377 for cladocera, 
and 0.185 for copepoda. When Table 3 is examined, 
MAPE (%) value was determined as 0.342 for Rotifer, 
0.557 for cladocera, and 0.301 for copepoda.  In this 
case, it can be said that the applied method produces 
very successful estimations.

The use of ANNs in ecology is limited to cases 
where there is a large amount of data and sufficient 
data to be allocated for model validation (Aguilar 
Ibarra et al. 2003). The predictive ability of the models 
tested here can be considered suitable for estimating 
the densities of zooplankton taxa density samples, 
showing the limnological status of the current 
reservoir, even with a small data series for network 
training, suggesting more applications for ANNs. The 
ANNs model was found to be suitable for estimating 
the monthly dynamics of zooplankton groups even in 
short series. Zooplankton density is known to control 
phytoplankton density (Ryding & Rast 1989). Therefore, 
determining the total density of zooplankton, which is 
believed to have the potential to affect phytoplankton 
growth, increases the importance of this study.

6. Conclusion

A neural network model can predict values that 
are outside the bounds of the training set, that is, that 
have never been introduced to the system before. 
Instead of creating a time series, the model does not 
include a time component due to the nature of the 
data distributed over time and space and determines 
the current state of the reservoirs. In summary, with 
this study, it has been seen that artificial neural 
networks are successful in predicting zooplankton 
densities in an aquatic environment thanks to their 
learning feature.
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