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Abstract

An accurate estimation of the sea surface temperature 
(SST) is of great importance. Therefore, the objective of this 
work was to develop an adaptive neuro-fuzzy inference 
system (ANFIS) model to predict SST in the Çanakkale 
Strait. The observed monthly air temperature, evaporation 
and precipitation data from the Çanakkale meteorological 
observation station were used as input data. The Takagi–
Sugeno fuzzy inference system was applied. The grid 
partition method (ANFIS-GP) and the subtractive clustering 
partitioning method (ANFIS-SC) were used with Gaussian 
membership functions to generate the fuzzy inference 
system. Six performance evaluation criteria were used to 
evaluate the developed SST prediction models, including 
mean square error (MSE), root mean square error (RMSE), 
mean absolute error (MAE), mean absolute percentage 
error (MAPE), Nash-Sutcliffe efficiency (NSE) and correlation 
of determination (R2). The dataset was randomly divided 
into training and testing datasets for the machine learning 
process. Training data accounted for 75% of the dataset, 
while 25% of the dataset was allocated for testing in ANFIS. 
The hybrid algorithm was selected as a training algorithm 
for the ANFIS. Simulation results revealed that the 
ANFIS-SC4 model provided a higher correlation coefficient 
of 0.96 between the observed and predicted SST values. 
The results of this study suggest that the developed 
ANFIS model can be applied for predicting sea surface 
temperature around the world.
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Introduction

Sea surface temperature (SST) is one of the most 
important parameters in Earth observation aimed 
at monitoring the global climate (Mahongo & Deo 
2013). SST plays an important role in the process of 
interactions between the atmosphere and the Earth’s 
surface (Zhang et al. 2017). It is a critical parameter for 
understanding and forecasting rainfall and hurricanes 
(Nobre & Shukla 1996).

Assessment and reconstruction of the ocean 
dynamics are key challenges (Ouala et al. 2018). 
Estimation and reconstruction of geophysical 
properties of the sea surface rely on model-based 
techniques that make significant use of a dynamic 
model to perform simulations based on specific ocean 
conditions (Gordon et al. 2000). On the other hand, 
the selection and parameterization of a dynamic 
model are still a complex issue for understanding 
the relationships between spatial and temporal 
changes in the ocean surface. Data-driven approaches 
have emerged as an attractive strategy to describe 
certain dynamic models with an increased amount of 
observational and simulation data. Neural networks 
are a state-of-the-art approach to many different 
issues related to machine learning (Ouala et al. 2018). 
They are an efficient and remarkable data-driven 
approach to estimating and reconstructing sea surface 
dynamics. An artificial neural network (ANN) has an 
important advantage in the system modelling, which 
does not require a well-defined physical relationship 
to systematically transform input data into output data 
(Farokhnia et al. 2011).

Predicting water temperature of seas, lakes, and 
streams is important in planning and management of 
water resources (Heddam et al. 2020). Several machine 
learning approaches have been extensively used to 
model water temperature. Their performance varies 
depending on the input variables and models used. 
Piccolroaz et al. (2013) proposed a simple lumped 
model (air2water) to forecast lake water surface 
temperature by using air temperature as an input 
predictor. The proposed model has been broadly 
used by several researchers for forecasting lake 
water surface temperature due to its higher accuracy 
and simplicity (Toffolon et al. 2014; Piccolroaz 2016; 
Piccolroaz et al. 2016; Zhu et al. 2020). As documented 
by Graf et al. (2019) and Zhu et al. (2020), the use of 
hybrid models offers some advantages in forecasting 
water temperature. Heddam et al. (2020) proposed 
machine learning approaches, including extremely 
randomized trees (ERT), multivariate adaptive 
regression splines (MARS), the M5 Model Tree (M5Tree), 
the random forest (RF), and the multilayer perceptron 

neural network (MLPNN) to model daily lake surface 
water temperature by using air temperature. The 
authors compared the results of the proposed 
approaches with the air2stream model and reported 
that none of the proposed approaches provided 
better results in predicting water temperature than 
the air2stream model. Graf et al. (2019) forecasted 
water temperature in the Warta River in Poland 
using the wavelet-neural network hybrid modelling 
approach. The authors proposed a hybrid model 
that combines discrete wavelet transforms and the 
ANN for forecasting water temperature. They used 
daily air temperatures from seven meteorological 
stations to predict daily water temperature. Zhu 
et al. (2020) developed and applied the multi-layer 
perceptron neural network (MLPNN) model and an 
integrated model of the wavelet transform and the 
MLPNN (WT-MLPNN) to forecast daily lake surface 
water temperature of eight lowland lakes in Poland. 
The authors used long-term daily lake surface water 
temperature and daily air temperatures as input 
variables. It was found that the hybrid WT-MLPNN 
model performed slightly better than the traditional 
MLPNN model in forecasting the lake surface water 
temperature. Zhu et al. (2019a) applied four different 
machine learning models, including multilayer 
perceptron neural network models (MLPNN), ANFIS 
with the subtractive clustering method (ANFIS-SC), 
ANFIS with the grid partition method (ANFIS-GP) and 
ANFIS with the fuzzy c-mean clustering algorithm 
(ANFIS-FC), to predict daily river water temperature. 
The authors used air temperature, river flow discharge, 
and the components of the Gregorian calendar as 
input variables. Piotrowski et al. (2020) employed 
shallow neural networks to model stream water 
temperature in six catchments. The authors used air 
temperature, river discharge, and the declination of the 
Sun as input parameters.

Zadeh (1965) first introduced the theory of fuzzy 
sets and fuzzy logic to describe basic properties and 
implications of a concept that plays an important 
role in human thinking. The principal idea underlying 
the fuzzy logic control was proposed and described 
in detail by Zadeh (1968) and Zadeh (1973). Jang 
(1993) developed a neuro-fuzzy approach that is a 
combined method to improve the efficacy of a model 
compared to the ANN and fuzzy logic. The neuro-fuzzy 
system combines neural networks and fuzzy logic 
and implements learning techniques developed in 
the ANN into the fuzzy inference system (FIS; Brown 
and Harris 1994). The adaptive neuro-fuzzy inference 
system (ANFIS) is a specific approach in neuro-fuzzy 
systems and Jang et al. (1997) indicated that the ANFIS 
produced noteworthy results in modelling of nonlinear 
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functions. The ANFIS uses an adaptive network for 
learning and is a popular approach for predicting 
parameters related to water resources (Nayak et al. 
2004; Aqil et al. 2007; Sönmez et al. 2018).

In recent years, artificial intelligence (AI) techniques 
have become increasingly important in water and 
climate applications due to their capability of learning 
concealed patterns from historical data and estimating 
non-linear systems (Awan and Bae 2016). Several 
researchers applied some artificial intelligence (AI) 
techniques to forecast water temperature in rivers 
and streams (Piccolroaz et al. 2013, 2016; Graf et al. 
2019; Zhu & Heddam 2019; Zhu et al. 2019a,b,c; 2020; 
Heddam et al. 2020; Piotrowski et al. 2020) and sea 
surface temperature (Garcia-Gorriz and Garcia-Sanchez 
2007; Mahongo & Deo 2013; Piotrowski et al. 2015; Patil 
et al. 2016; Samadianfard et al. 2016; Zhang et al. 2017; 
Ouala et al. 2018). However, there is no study on the 
SST prediction for the Çanakkale Strait. Therefore, the 
main objective of the present study was to develop an 
adaptive neuro-fuzzy inference system (ANFIS) model 
to predict SST by using climate data for the Çanakkale 
Strait.

Materials and methods

Data and study area

The Çanakkale Strait is located in the northwestern 
part of Turkey and is part of the Turkish Straits System 
that includes the Bosporus Strait, the Marmara Sea and 
the Çanakkale Strait. It connects the Aegean Sea and 
the Marmara Sea. The Çanakkale Strait has a special 
two-layer flow regime and is a route for low salinity 
waters moving from the Black Sea to the Aegean Sea. 
In addition, the strait is also a route for high salinity 
waters originating in the Aegean Sea flowing into the 
Marmara Sea and then into the Black Sea (Jarosz et al. 
2012). The Çanakkale Strait is approximately 61 km long 
and the average depth is 55 m. The Çanakkale Strait is 
under anthropogenic pressure such as urbanization, 
marine traffic, harbor activities, commercial fishing and 
pollutants coming from the Black Sea Basin.

The region has a typical transitional climate 
characterized by rainy and cold winters, and dry and 
hot summers. Cengiz and Akbulak (2009) reported 
that July is the warmest month and January is the 
coldest month. Kale (2017a) documented that the air 
temperature in the region had an upward trend, similar 
to Kale’s (2017b) report that indicates that trends in 
evaporation were increasing. 

Observational data on monthly air temperature, 
evaporation and precipitation from the Çanakkale 

meteorological observation station of Turkish State 
Meteorological Services (Fig. 1) were used in this study. 
The data cover a period of 42 years from 1971 to 2012. 
The SST data were recorded from the same station.

ANFIS Architecture

Mamdani (1974) documented that the fuzzy 
inference system (FIS) consists of four major 
components. These components were identified as 
(i) a fuzzification interface converting crisp values 
into fuzzy values depending on the corresponding 
degrees with linguistic variables, (ii) an interface 
engine executing inference operations on the 
rules, (iii) a rule base encompassing fuzzy if-then 
rules, and (iv) a defuzzification interface converting 
fuzzy consequences back into a crisp output. The 
Takagi–Sugeno (T-S) fuzzy inference system, which is 
proposed by Takagi and Sugeno (1985), is one of the 
most widely used precise fuzzy models. A weighted 
linear mixture of crisp inputs establishes a fuzzy rule 
rather than a fuzzy set in the T-S fuzzy inference 
system (Talei et al. 2013). A fuzzy set is a set without a 
crisp and defined boundary. Jang (1993) proposed an 
adaptive network-based fuzzy inference system, which 
is a machine learning model combining the ANN and 
the fuzzy logic. The architecture of the ANFIS contains 
fuzzification by the fuzzy inference system and several 
layers like the ANN (Jang et al. 1997). The system 
contains two inputs (x1 and x2) in the ANFIS structure. 
Takagi–Sugeno’s type of if-then rules and one output 
(y) are usually considered as follows:

Rule 1: if (x1 is A1) and (x2 is B1) then f 1 = p1x1+q1x2+r1

Rule 2: if (x1 is A2) and (x2 is B2) then f 2 = p2x1+q2x2+r2

Figure 1
Location of the study area
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In these equations, A and B indicate fuzzy sets, 
while p, q, and r indicate the resulting parameters of 
the obtained model in the training step. The fuzzy 
inference system converts the input variables by using 
membership functions. Hence, the outcomes of the 
membership functions create the rule bases (Jang et al. 
1997). Jang (1993) divided the ANFIS structure into five 
layers and described the node functions in the same 
layer of the same function family as given below:

Layer 1: the fuzzification layer

Layer 1 is the input variables, fuzzy sets. Each node 
in layer 1 fits a function parameter. A frequently used 
activation function is the Gaussian function. 

In this equation,  is the membership function 
of Ai and specifies the degree to which a given 
x satisfies the quantifier. In addition, x is the input to 
the node i, and Ai is the linguistic label related to this 
node function. Furthermore, (ai, bi, ci) is the parameter 
set. The bell-shaped functions change accordingly, 
while the values of these parameters change indicating 
different membership functions on linguistic label 
Ai. Continuous and fragmented functions, such as 
triangular or trapezoidal membership functions, are 
in fact also capable candidates for node functions 
in this layer. The parameters in this layer are called 
preliminary parameters.

Layer 2: the base rule layer

Layer 2 computes any two memberships acquired 
by the fuzzy sets to characterize the fuzzy rules. Each 
node output characterizes the firing strength of a rule.

Layer 3: normalized firing strengths

Each node in layer 3 is fixed or non-adaptive. 
Outputs of this layer are called normalized firing 
strengths.

Layer 4: the defuzzification layer

Each node fits an output in layer 4. The parameters 
in layer 4 are returned as the following parameters.

 is the output of layer 3 and (pi, qi, ri) is the 
parameter set. Parameters in this layer are referred to 
as consequent parameters.

Layer 5: the output of the ANFIS model

Layer 5 is the last layer and contains only one node. 
In this layer, the single node is a non-adaptive or fixed 
node. As a summary of all received signals from the 
prior node, this most recent node calculates the total 
output.

As summarized by Zhu et al. (2019a), the 
parameters of the ANFIS model kept in the 
fuzzification layer that encompasses the nonlinear 
parameters for the membership functions are 
updated through the training process using the 
back-propagation algorithm (forward step). The 
parameters kept in the defuzzification layer are 
updated through the training process using the least 
squares method (backward step). The membership 
functions have a significant role in the ANFIS models. 
An excellent selection of membership functions within 
various available types with the best optimization of 
parameters helps to develop a highly accurate model.

The Matlab software and the anfisedit toolbox 
(Matlab R2015a) were used to analyze the data 
and generate the ANFIS. The classical ANFIS was 
recognized as a basic model due to its ability to model 
hydrological phenomena. The Takagi–Sugeno fuzzy 
inference system (Takagi & Sugeno 1985) was applied. 
In the adaptive neuro-fuzzy inference system, the 
model-developing process starts with the separation 
of datasets between training and testing datasets. In 
the present study, the entire dataset was randomly 
divided into the training and testing datasets. The 
training data accounted for 75% of the dataset, while 
25% of the dataset was allocated for testing in ANFIS. 
The hybrid algorithm was nominated as a training 
algorithm for the ANFIS. The training stage included an 
iterative procedure that aimed to compute optimum 

 is the output of layer 3 and (
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values by minimizing the sum of squared differences 
between training data values and model predictions. 
The hybrid learning algorithm was designated to 
train the fuzzy inference system. The modification 
process of the adaptive parameters in the adaptive 
neuro-fuzzy inference system depends on a backward 
and forward hybrid learning algorithm. In the 
backward stage, the subsequent parameters (in layer 4) 
are fixed, while the antecedent parameters are tuned 
using the gradient descent method. In the forward 
stage, on the other hand, the antecedent parameters 
comprising membership functions and fuzzy rules 
are fixed, whereas the subsequent parameters are 
restructured by the least square error algorithm (Jang 
1993). The construction of the fuzzy rule base is the 
most important stage in the development of the ANFIS 
model (Zhu et al. 2019a). The number of fuzzy rules 
for the ANFIS models is directly related to the method 
used for partitioning the input dataset.

The ANFIS could be developed by using diverse 
methods to achieve machine learning of the input 
dataset. These methods are subtractive clustering 
(SC), fuzzy c-means clustering, and grid partitioning 
(GP). The grid partition method calculates the number 
of fuzzy rules by multiplying the number of input 
variables by the number of fuzzy subsets for each 
input (Wei et al. 2007). Jang (1993) documented 
that the grid partition method is not appropriate 
when the input number is greater than six. On the 
other hand, the number of fuzzy rules is equal to 
the number of clusters in the subtractive clustering 
method (Cakmakci 2007). The subtractive clustering 
method clusters a dataset in the feature space by 
defining the number of clusters and their associated 
centers (Alizamir et al. 2020). In the present study, the 
grid partition method and the subtractive clustering 
method were used with the Gaussian membership 
functions to generate a fuzzy inference system to 
fuzzify the input data. Both methods were used 

to develop the ANFIS model to predict SST in the 
Çanakkale Strait, and then their performance in 
modelling SST was compared. The structure of the 
adaptive neuro-fuzzy inference system is presented in 
Figure 2. The ANFIS architecture used in the present 
study comprises five layers containing the fuzzy 
layer, the product layer, the normalized layer, the 
de-fuzzy layer and the output layer. The method of 
the weighted average of all rule outputs (wtaver) was 
used as the defuzzification method to compute crisp 
output values from the aggregated output fuzzy set. 
The training process was continued until the number 
of epochs reached 1000.

Performance evaluation of the ANFIS Model

In this study, six evaluation criteria were used 
to evaluate the performance of the model: mean 
absolute error (MAE), mean square error (MSE), root 
mean squared error (RMSE), mean absolute percentage 
error (MAPE), Nash–Sutcliffe efficiency (NSE) and the 
coefficient of determination (R2).

Mean square error (MSE)

The mean square error is possibly the most 
frequently used error metric. It penalizes larger errors, 
because squaring larger numbers has a greater impact 
than squaring smaller numbers. The MSE is the sum 
of the squared errors divided by the number of 
observations. The MSE can be explained as follows:

In this formula, n is the total number of 
observations, At is the actual value, while Ft is the 
forecasted value at observation t.

Root mean square error (RMSE)

The root mean square error is the square root of 
the mean square error. Dawson et al. (2006) noted that 
the RMSE attaches extra significance on the outliers 
in the dataset. Therefore, the RMSE is frequently used 
in numerous iterative estimation and optimization 
schemes (Azad et al. 2018). The RMSE can be calculated 
as follows:

Figure 2
ANFIS structure
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In this formula, n is the total number of 
observations, At is the actual value, while Ft is the 
forecasted value at observation t.

Mean Absolute Error (MAE)

The mean absolute error calculates all deviations 
from the original data without considering a sign. The 
MAE can be computed as follows:

In this formula, n is the total number of 
observations, At is the actual value, while Ft is the 
forecasted value at observation t.

Mean Absolute Percentage Error (MAPE)

The mean absolute percentage error is the average 
of absolute errors divided by the actual observation 
values. The MAPE can be calculated as follows:

In this formula, n is the total number of 
observations, At is the actual value, while Ft is the 
forecasted value at observation t.

Nash–Sutcliffe Efficiency (NSE)

The Nash–Sutcliffe efficiency is a normalized 
statistic that defines the comparative degree of the 
residual variance related to the observed data variance 
(Nash and Sutcliffe 1970). The NSE shows how well 
the plot of actual versus forecasted data fits the 1:1 
line. The NSE ranges from -∞ to 1. Basically, the more 
accurate the model is, the closer the value is to 1. 
A positive NSE matches the perfect model to the actual 
data, whereas a negative NSE indicates that the actual 
mean is a better predictor than the model. If the NSE is 
0, the model forecasts are as precise as the mean of the 
actual data. The NSE calculation is described as follows:

In this formula, n is the total number of 
observations, At is the actual value, Ft is the forecasted 
value, and Atbar is the average of the actual value at 
observation t. 

Coefficient of determination (R2)

The coefficient of determination defines the 
relationship between the actual and forecasted values. 
The coefficient of determination ranges between 
0 and 1. Higher R-squared values indicate a higher 
co-linearity. The coefficient of determination can be 
calculated as follows:

In this formula, n is the total number of 
observations, At is the actual value, Ft is the forecasted 
value, Atbar is the average of the actual value, and Ftbar 
is the average of the forecasted value at observation t. 

Results

Four categories of input data (air temperature, 
evaporation, precipitation, and month) were 
considered when developing the prediction models 
for SST. Descriptive statistics of observed parameters 
are given in Table 1. The table shows that the air 
temperature was the most correlated parameter with 
SST.

Both the grid partition method and the 
subtractive clustering method have four different 
versions in terms of the number of inputs. In both 
methods, version 1 (GP1 and SC1) includes only air 
temperature, version 2 (GP2 and SC2) includes air 
temperature and evaporation, version 3 (GP3 and 
SC3) includes air temperature, evaporation and 
precipitation, while version 4 (GP4 and SC4) includes all 
parameters (month, air temperature, evaporation, and 
precipitation) as input parameters.

The accuracy of the prediction relative to the 
observation was checked during the training and 
testing stages. Six performance evaluation parameters 
were used to evaluate the developed models for the 
prediction of SST: mean square error (MSE), root mean 
squared error (RMSE), mean absolute percentage error 
(MAPE), mean absolute error (MAE), Nash-Sutcliffe 
efficiency (NSE) and coefficient of determination (R2). 
The application of multiple error criteria allowed for 
a better understanding of the differences between the 
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observed and predicted SST values. The comparison 
between the four versions of the ANFIS-SC and 
ANFIS-GP models revealed that ANFIS-SC4 (the model 
with four inputs as predictors: month, air temperature, 
evaporation and precipitation) yielded the best 
accuracy among all the developed models. The 
ANFIS-SC4 model performs better than all the other 
versions of SC and GP with regard to lower MAE and 
RMSE and higher NSE and R-squared values. Moreover, 
since R-squared and NSE values closer to 1 indicate a 
better model, the ANFIS-SC4 was considered the best 
model. The performance measures of the hybrid ANFIS 
models are presented in Table 2. A clear increase in 
model performance from version 1 to version 4 can 
be observed for both ANFIS-SC and ANFIS-GP models. 

Predicted SST values usually correlate with observed 
SST values for most models during the training stage. 
The R-squared values gradually increased during the 
training stage for all models. On the other hand, the 
R-squared values have decreased from version 1 to 
version 2 for both ANFIS-SC and ANFIS-GP models 
during the validation stage. Versions 3 of both models 
have similar values with versions 2. Then, versions 4 
showed increased R-squared values in both models. 
Although ANFIS-GP4 had the highest R-squared 
value for the training stage in all models, this case 
was reversed in the validation stage and ANFIS-GP2, 
ANFIS-GP3 and ANFIS-GP4 had lower performance 
during the validation stage compared to ANFIS-GP1. 
The fact remains that the overall performance of 

Table 1
Basic statistics of the measured factors in the Çanakkale meteorological observation station

Variable Mean Unit SE SD Maximum Minimum Correlation with SST
Air Temperature 18.90 °C 0.30 5.37 28.50 5.30 0.91
Evaporation 169.05 mm 4.23 75.32 366.60 29.50 0.75
Precipitation 33.73 mm 2.16 38.50 222.20 0.00 −0.48
SST 18.96 °C 0.26 4.71 26.70 7.50 1.00

Note: SE: standard error; SD: standard deviation; SST: sea surface temperature

Table 2
Performance of different ANFIS models in modelling SST (°C) for the Çanakkale Strait

ANFIS Model Stage MAE MSE RMSE MAPE NSE R-squared

SC1

Training 1.004 2.190 1.480 6.366 0.885 0.922

Validation 0.459 1.219 1.104 2.596 0.608 0.831

Total 1.463 3.409 1.846 8.963 0.846 0.846

SC2

Training 0.800 1.412 1.188 4.725 0.926 0.932

Validation 0.327 0.751 0.867 1.919 0.758 0.770

Total 1.127 2.163 1.471 6.644 0.902 0.902

SC3

Training 0.792 1.368 1.169 4.669 0.928 0.934

Validation 0.328 0.746 0.864 1.924 0.760 0.770

Total 1.120 2.114 1.454 6.594 0.904 0.905

SC4

Training 0.571 0.725 0.851 3.323 0.962 0.962

Validation 0.205 0.254 0.504 1.196 0.918 0.900

Total 0.776 0.978 0.989 4.519 0.956 0.956

GP1

Training 1.057 2.440 1.562 6.664 0.872 0.907

Validation 0.453 1.164 1.079 2.569 0.625 0.842

Total 1.510 3.604 1.898 9.233 0.837 0.838

GP2

Training 0.812 1.480 1.217 4.894 0.922 0.929

Validation 0.339 0.865 0.930 1.975 0.722 0.734

Total 1.152 2.346 1.532 6.869 0.894 0.894

GP3

Training 0.793 1.443 1.201 4.763 0.924 0.931

Validation 0.341 0.862 0.928 1.972 0.723 0.736

Total 1.134 2.305 1.518 6.735 0.896 0.896

GP4

Training 0.486 0.533 0.730 2.709 0.972 0.972

Validation 0.262 0.677 0.823 1.556 0.782 0.753

Total 0.748 1.210 1.100 4.265 0.945 0.946



361
ANFIS for predicting SST

Oceanological and Hydrobiological Studies, VOL. 49, NO. 4 | DECEMBER 2020 

Faculty of Oceanography and Geography, University of Gdańsk, Poland

ANFIS-GP4 was better than other versions of ANFIS-GP 
models in terms of higher NSE and R-squared values, 
lower MAE, MSE, RMSE, and MAPE values.

The results of ANFIS-SC2 and ANFIS-SC3 indicate 
that the inclusion of the precipitation in the models 
provides almost similar outcomes. In this case, it can 
be concluded that the use of precipitation is not 
compulsory for predicting SST in the Çanakkale Strait. 
Similar conclusions were also reached for ANFIS-GP2 
and ANFIS-GP3 models. In the models with two 
inputs, on the other hand, the use of evaporation 
provided more improvement than the consideration 
of precipitation for both ANFIS-SC and ANFIS-GP. These 
results confirm that the role of air temperature and 
evaporation in SST modelling is much more important 
than precipitation.

First, the ANFIS creates suitable membership 
functions for each input variable at the training 
stage. Then, the membership functions are modified 
according to the error correction training method by 
using the back-propagation algorithm. In addition, 
the constant parameter of the linear output functions 
is adapted for the period of the learning stage based 
on the least mean square algorithm. The ANFIS model 
operates 1000 training data items during training 
periods. The training data constituted 75% of the 
dataset, while 25% of the dataset was allocated 
for testing in the ANFIS. The hybrid algorithm was 
selected as a training algorithm for the ANFIS. Figure 
3 presents the diagram of the observed values for 
the monthly SST and the predicted values obtained 
using the ANFIS models. It illustrates the comparison 
between the observed and predicted SST values.

The highest correlation coefficient (0.96) was found 
between the observed and predicted SST values in the 
ANFIS-SC4 model for the overall prediction of SST time 
series. Moreover, the ANFIS-GP4 model outperformed 
during the training stage in terms of the R-squared 
value (0.97). Figure 4 presents the scatter plots of the 
observed and predicted SST values for all models. 
The respective correlation coefficient indicates an 
acceptable estimation of the model.

The output surface maps for the developed 
ANFIS-SC4 and ANFIS-GP4 models were presented in 
Figure 5 and Figure 6. In addition, the input-output 
surfaces produced by the ANFIS-SC3 and ANFIS-GP3 
models are presented in Figure 7. These figures show 
the relationships between the predicted SST values 
and the other two  inputs, respectively. The 3D surface 
visualization of the relationships between the inputs 
and the output for the ANFIS-SC2 and ANFIS-GP2 
models was plotted in Figure 8.

Discussion

This study presents the ANFIS models developed 
to predict SST in the Çanakkale Strait in Turkey. Six 
performance evaluation criteria were used to evaluate 
the ANFIS models developed for SST prediction. 
The Takagi–Sugeno fuzzy inference system was 
implemented and the training data accounted 
for 75% of the dataset, while 25% of the dataset 
was allocated for testing in the ANFIS. The hybrid 
algorithm was selected as a training algorithm for 
the ANFIS. The average testing error was 0.91. The 
rules of the models were determined according to 
the relationships between the inputs and the output 
by the adaptive neuro-fuzzy inference system. The 
observed and predicted SST values were compared 
and Figure 4 presents the scatter plots of the observed 
and predicted SST values in the Çanakkale Strait. The 
respective correlation coefficient of 0.96 was found 
between the observed and predicted SST values in 
the ANFIS-SC4 model. The output surface maps for the 
developed ANFIS models were plotted and presented 
in Figures 5–8.

The SST is an important parameter in 
oceanographic research and planning of miscellaneous 
offshore activities (scientific, traditional, commercial 
and recreational events such as research, fishing, and 
marine transportation). It is one of the most important 
parameters in Earth observation aimed at monitoring 
the global climate (Mahongo & Deo 2013). Therefore, 
an accurate estimation of SST is very important. 
Data-driven approaches and physical observations 
are used to predict SST. Data-driven approaches 
range between traditional stochastic techniques, 
such as regression analysis (Kug et al. 2004), empirical 
canonical correlation analysis (Collins et al. 2004), 
trend analysis (Kale et al. 2016a,b, 2018; Ejder et al. 
2016a,b; Kale & Sönmez 2018a,b; 2019a,b,c; Sönmez 
& Kale 2020, Arslan et al. 2020), Markov model (Xue 
& Leetmaa 2000), genetic algorithms (Neetu et al. 
2011), and modern artificial intelligence approaches, 
such as neural networks (Patil et al. 2016), adaptive 
neuro-fuzzy inference systems (Sönmez et al. 2018).

Many researchers applied artificial intelligence 
techniques in research on water resources and climate 
with respect to environmental monitoring, assessment 
and forecasting (Altunkaynak et al. 2005; Kisi 2005; 
Ocampo-Duque et al. 2006; Sengorur et al. 2006; Terzi 
et al. 2006; Icaga 2007; Elhatip & Kömür 2008; Ay & Kisi 
2011; Areerachakul 2012; Hisar et al. 2012; Qasaimeh 
et al. 2012; Ranković et al. 2012; Sönmez et al. 2012; 
Sönmez et al. 2013a,b; Ay & Kisi 2014; Emamgholizadeh 
et al. 2014; Heddam 2014; Alte & Sadgir 2015; Piotrowski 
et al. 2015; Khadr & Elshemy 2016; Bayatzadeh 
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Figure 3
Comparison of ANFIS-SC and ANFIS-GP models for the observed and predicted SST values in the Çanakkale Strait
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Figure 4
Scatter plots of ANFIS-SC and ANFIS-GP models for the observed and predicted SST values in the Çanakkale Strait
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Figure 5
3D surface visualization of the relationship between the input and output for the ANFIS-SC4 model
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Figure 6
3D surface visualization of the relationship between the input and output for the ANFIS-GP4 model
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Figure 7
3D surface visualization of the relationship between the input and output for ANFIS-SC3 and ANFIS-GP3 models
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Fard et al. 2017; Csábrági et al. 2017; Sönmez et al. 
2018). On the other hand, several attempts have 
been made to predict SST globally (Garcia-Gorriz & 
Garcia-Sanchez 2007; Mahongo & Deo 2013; Patil et 
al. 2016; Samadianfard et al. 2016; Zhang et al. 2017; 
Ouala et al. 2018). Unfortunately, there is no research 
on the assessment of the adaptive neuro-fuzzy 
inference system for predicting SST. However, some 
researchers developed adaptive neuro-fuzzy models 
to estimate SST and compare the accuracy of the 
performance with other techniques. Garcia-Gorriz and 
Garcia-Sanchez (2007) used the ANN to predict sea 
surface temperatures in the western Mediterranean 
Sea. The authors trained the ANN with meteorological 
variables and documented that the ANN successfully 
predicted the mean monthly SST consistent with in 
situ observations. Similarly, Patil et al. (2016) combined 
numerical and neural networks to predict SST of the 
Indian Ocean at daily, weekly and monthly time scales. 
The authors reported that by combining the two 
techniques it was possible to make precise forecasts 
for selected locations. Zhang et al. (2017) developed 
a neural network and implemented a long short-term 
memory to predict SST in the coastal seas of China. 
The authors confirmed the efficacy of the suggested 
method. Ouala et al. (2018) proposed neural networks 
for the forecasting of SST off the coast of South Africa. 
Researchers indicated that the suggested patch-level 
neural network-based representations surpassed 
other data-driven models in terms of forecasting 
and missing data interpolation performance. Xu et 
al. (2020) predicted a spatio-temporal distribution 
of SST time series in the offshore waters of China. 

To achieve this objective, the authors developed 
a regional convolution long short-term memory 
(RC-LSTM) model. The prediction accuracy of the 
model was enhanced by merging spatial and temporal 
information. The authors reported that the developed 
model was more accurate than traditional estimation 
models. Therefore, they suggested that the developed 
model should be applied in future research. Wei et 
al. (2019) predicted SST in the South China Sea by the 
ANN and the authors recommended discrete time 
series of SST data in two datasets to construct two 
neural network models. The researchers stated that 
the suggested training method provides adequate 
forecasting accuracy. In the present study, a commonly 
used method that separates the dataset into training 
and testing stages was used to train and test the time 
series of SST. The method proposed by Wei et al. (2019) 
reduced the standard deviation of the prediction 
outputs and thus improved the accuracy of the 
prediction. Therefore, it may be considered for further 
research.

Artificial neural networks and adaptive neuro-fuzzy 
inference system models have also been developed 
and proposed by several scientists to predict surface 
water temperature of lakes, rivers, and streams. Zhu 
et al. (2019a) applied four different machine learning 
models, including multilayer perceptron neural 
network models (MLPNN), ANFIS with the subtractive 
clustering method (ANFIS-SC), ANFIS with the grid 
partition method (ANFIS-GP), and ANFIS with the fuzzy 
c-mean clustering algorithm (ANFIS-FC) to predict 
daily river water temperature. The authors used air 
temperature, river flow discharge and the components 

Figure 8
3D surface visualization of the relationship between the input and output for ANFIS-SC2 and ANFIS-GP2 models
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of the Gregorian calendar as input variables. They 
reported that the MLPNN model generally provided 
the highest performance, even though ANFIS-FC and 
ANFIS-GP were slightly more accurate at some river 
stations. In the present study, although the developed 
ANFIS models include similar methods (ANFIS-SC and 
ANFIS-GP), ANFIS-SC4 was found to be more accurate 
to predict SST in the Çanakkale Strait. On the other 
hand, Zhu et al. (2019a) documented that the highest 
correlation value between the observed and predicted 
water temperature was 0.9764, while in the present 
study it was 0.956. The values were relatively close to 
each other. Therefore, the prediction capacity of the 
developed models is relatively applicable to predict 
SST for other locations. Zhu et al. (2020) developed 
and applied the multi-layer perceptron neural 
network (MLPNN) model and integrated the model 
of the wavelet transform and MLPNN (WT-MLPNN) to 
forecast daily lake surface water temperature of eight 
lowland Polish lakes. The authors used long-term 
daily lake surface water temperature and daily air 
temperatures as input variables. It was found that the 
hybrid WT-MLPNN model performed slightly better 
than the traditional MLPNN model for forecasting 
lake surface water temperature. The use of hybrid 
models has some advantages in forecasting water 
temperature, as documented by both Zhu et al. (2020) 
and Graf et al. (2019). Graf et al. (2019) forecasted 
river water temperature of the Warta River in Poland 
using the wavelet-neural network hybrid modelling 
approach. The authors proposed a hybrid model 
that combines discrete wavelet transforms and 
artificial neural networks (ANN) for forecasting water 
temperature. They used daily air temperatures from 
seven meteorological stations to predict daily water 
temperature. The authors reported that the WT-ANN 
models performed well in modelling and forecasting 
water temperature of the river. In addition, it was also 
documented that the superior performance of the 
WT-ANN models is principally observed for extreme 
weather conditions, such as heat waves and drought. 
Similarly, the ANFIS models developed in this study 
outperformed during such conditions, with the highest 
temperature and evaporation recorded.

Samadianfard et al. (2016) predicted hourly water 
temperatures at a buoy station in Yuan-Yang Lake, 
Taiwan, at different depths. They used different soft 
computing techniques, including the ANN, ANFIS, 
and gene expression programming (GEP). The authors 
noted that the GEP provided rationally realistic trends 
for predicting an hourly water temperature at different 
depths. However, the correlation coefficient of GEP 
(0.73) was relatively lower for all depths to accurately 
predict the water temperature. The developed ANFIS 

model has a much higher correlation according to the 
findings of Samandianfard et al. (2016). In addition, the 
researchers noted that the ANFIS model considerably 
underestimated high values (>  13°C). Conversely, 
the ANFIS model developed in the present study 
predicted sea surface temperature with high accuracy. 
The difference in the estimation performance of 
ANFIS models between the two studies could be 
related to input variables and water characteristics. 
The sea surface is more saline than lake waters. 
Lower salinity can lead to higher fluctuations in the 
surface temperature. Therefore, the comparison of 
all techniques should be conducted by using a more 
comprehensive dataset.

A relatively higher correlation (0.96) was found 
between the observed and predicted SST values. 
The forecasting capability of the ANFIS model is 
closely equal to the findings reported by Soyupak et 
al. (2003) and Zhao et al. (2007). Soyupak et al. (2003) 
documented that the coefficient of determination 
was 0.95, whereas Zhao et al. (2007) noted that it was 
0.94 between the observed and predicted dissolved 
oxygen (DO) values. Moreover, the correlation in this 
study was relatively higher compared to Sönmez et 
al. (2018), Singh et al. (2009) and Akpomie et al. (2016). 
Sönmez et al. (2018) developed an ANFIS model to 
predict Cd ion concentration in the Filyos River. The 
authors investigated the hybrid learning algorithm 
and used the Gaussian membership function to design 
a Takagi–Sugeno type fuzzy inference system. They 
documented that the correlation was 0.91 between 
the observed and predicted Cd ion concentrations. 
Singh et al. (2009) indicated that the coefficient of 
correlation was 0.85 for the observed and predicted 
DO values, while Akpomie et al. (2016) reported a 
similar finding, i.e. 0.86 for Cd ion concentration. On 
the other hand, Daneshmand et al. (2015) used the 
ANFIS to model the minimum temperature based 
on spectral analysis of climate indices. The authors 
used a hybrid training algorithm to train the system, 
and they found a high correlation coefficient of 
0.987 between the predicted and observed values. 
Mahongo and Deo (2013) used the ANN to estimate 
seasonal and monthly SST anomalies in the western 
Indian Ocean and informed that the neural network 
model had provided the best overall performance. 
The authors noted that RMSE between predictions and 
observations was about 0.06°C and 0.13°C for seasonal 
and monthly SST anomalies, whereas the mean 
coefficient of correlation was about 0.98 and 0.88, 
respectively. The difference between those studies and 
this study may be related to dissimilarities in the data 
period. In the present study, mean annual SST data 
(obtained from the monthly average) were analyzed, 
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while Mahongo and Deo (2013) analyzed both monthly 
and seasonal SST data and Daneshmand et al. (2015) 
experimented with the daily minimum temperature 
to estimate the monthly minimum temperature. In 
addition, correlations show similarities for both studies 
in terms of the monthly SST time series. Sönmez et al. 
(2013a) implemented a fuzzy logic assessment method 
to evaluate the quality of water in the Karasu Stream 
and the authors endorsed the fuzzy logic assessment 
method as a tool for water quality assessment. Sönmez 
et al. (2018) reported that the ANFIS presented high 
reliability and robustness. Similarly, the present study 
revealed that the ANFIS achieved high accuracy in 
predicting the SST values in the Çanakkale Strait by 
using a limited set of climatic data.

The analyses provided evidence that SST 
responds to changes (both increase and decrease) 
in air temperature. They support the argument that 
SST will be susceptible and strongly affected by 
climate change. Similarly, Kale (2017a) reported that 
the increase in temperature trends causes climatic 
changes. The author stated that the city of Çanakkale 
would be affected by global warming and climate 
change, and also would have a warmer climate 
in the future. Similarly, Kale (2017b) also reported 
that the annual evaporation would increase in the 
future, similarly to temperature. Therefore, accurate 
estimation of SST is important for aquatic ecosystems.

Piotrowski et al. (2015) compared different ANN 
types (multi-layer perceptron ANN, product-unit 
ANN, adaptive-network-based fuzzy inference 
systems, and wavelet ANN) for the prediction of 
water temperature in rivers. The authors reported 
that the multi-layer perceptron ANN performed 
better than the product-unit ANN. The performance 
of adaptive-network-based fuzzy inference systems 
and the wavelet ANN was found to be poor. Similarly, 
Ay and Kisi (2014) indicated the advantage of the 
multi-layer perceptron ANN over the ANFIS in 
modelling the chemical oxygen demand in rivers. On 
the other hand, Kisi et al. (2012) noted that the ANFIS 
outperformed the multi-layer perceptron ANN in 
modelling the suspended sediment, whereas Wang 
et al. (2009) documented that the ANFIS performed 
better than the multi-layer perceptron ANN in 
estimating monthly rive discharges. In addition, He et 
al. (2014) reported that the performance of the ANFIS 
and the multi-layer perceptron ANN was similar and 
the superiority of one model over another could 
depend on the number of input variables. The present 
paper revealed that the developed ANFIS model is 
highly efficient in predicting SST.

One of the limitations of the present study could be 
the limited input dataset. Shaltout (2019) indicated that 

SST of the Red Sea was correlated with the mean sea 
level pressure, air temperature at 2 m above sea level, 
cross-coast wind stress and sensible heat flux. Similarly, 
the air temperature at 2 m above sea level was used as 
an input variable to train the neuro-fuzzy model in the 
present study. In addition, evaporation and rainfall are 
key parameters in the hydrological cycle. Therefore, 
this limitation could be overcome by using these 
parameters in the training phase of the ANFIS model. 
On the other hand, there is no information about the 
most effective parameters on the SST in the Çanakkale 
Strait. Consequently, more research should be carried 
out to understand the most effective parameters on 
the SST in the Çanakkale Strait in the forthcoming 
periods. Nevertheless, as documented by Nayak et 
al. (2004), one of the advantages of the ANFIS is that 
it does not require an a priori model structure, unlike 
most of the time series modelling methods. Thus, the 
developed ANFIS model stands out among other SST 
prediction techniques.

One of the problems sometimes encountered 
when training a fuzzy system is the over-fitting of 
data where the model cannot be generalized and 
instead begins to learn certain patterns. This may be 
due to the use of a large number of hidden nodes or 
training examples. In this study, several experiments 
have been conducted on the ANFIS architecture and 
the rate of training and test data to ensure that this 
is not the case. The epoch number was set as 1000 to 
resolve this issue. The ANFIS implements a multiple 
iterative learning procedure and rapidly converges due 
to the hybrid learning algorithm used. The high level of 
accuracy that occurs during the testing stage can show 
that there is no excessive fit.

Finally, the size of training data is one of the 
most critical factors increasing the accuracy of the 
developed model to predict SST. The ANFIS uses the 
excellent learning algorithms of the ANN and the 
excellent estimate functions of the FIS. It can provide 
computations without mathematical modelling 
and offer an agreeable solution to the non-linear 
prediction problem. The ANFIS has an adaptable 
background and uses training data to produce a fuzzy 
inference system. Therefore, the ANFIS was preferred 
in this study. The results of the study showed that the 
developed ANFIS model is capable of predicting SST 
values.

Conclusions

In the present study, an adaptive neuro-fuzzy 
inference system has been developed and suggested 
for predicting sea surface temperature in the 
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Çanakkale Strait. A relatively higher correlation (0.96) 
was achieved between the observed and predicted 
SST values. The analyses provided evidence that SST 
responds to changes in air temperature. Thus, the SST 
will be susceptible and extremely affected by climatic 
changes. Therefore, an accurate estimation of SST is 
crucial for aquatic ecosystems. It can be concluded 
that the developed ANFIS model is able to predict SST 
values in the Çanakkale Strait by using a limited set of 
climatic data. The proposed model can be effectively 
used to predict sea surface temperature.
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