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Abstract

The presented laboratory experiment was designed 
to characterize the quantity and compositional variation 
of algal extracellular amino acids (AAs) that may represent 
an alternative nutrient source in a natural environment. To 
resemble algal bloom scenarios, analyses were conducted 
in mono- and/or co-cultures of the bloom-forming species 
Skeletonema costatum, Scrippsiella trochoidea, Ulva fasciata, 
and Corallina officinalis during their active growth phase. The 
study revealed that S. costatum exhibited higher production 
of the dominant AAs than S. trochoidea. Alanine, lysine, and 
threonine acids are the dominant amino acids in S. costatum 
and S. trochoidea filtrates, which may play a role in mucus 
formation during mucosal phytoplankton blooms with 
negative ecological effects. On the other hand, aspartic, 
glutamine, alanine, and leucine acids are the dominant amino 
acids in macroalgae. In co-culture experiments, U. fasciata 
shows strong and rapid allelopathic activity against these 
two potentially harmful species. The AA production offers an 
advantage to species with the capacity to absorb them to 
form blooms. Thus, anthropogenic inorganic nutrient inputs 
may be less important for the development of algal blooms 
in coastal waters. A major difference that distinguishes this 
work from others is the use of specific multi-taxa cultures of 
phytoplankton and macroalgae. The study represents a new 
research effort in Alexandria waters.
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Abbreviations:

AAs – amino acids; DFAAs – dissolved free amino acids; 
DOM – dissolved organic matter; HABs – harmful algal 
blooms; μE m-2  s-1 – micro-einsteins per second per 
square meter; HSD – Tukey’s test 

1. Introduction

Extracellular algal production is considered a 
significant part of the algal primary production 
(Myklestad 2000). Despite the fact that the pool of 
algal dissolved free amino acids (DFAAs) in seawater 
represents a small fraction of dissolved organic matter 
(DOM) (Thornton 2014), its exploration is critical for 
understanding primary producers’ nitrogen demand 
during periods of insufficient dissolved inorganic 
nitrogen concentrations (Tyler et al. 2003), as well as 
the growth and other biological processes of living 
organisms (Vidoudez & Pohnert 2012) affecting the 
global carbon cycle (Kujawinski 2011). The release of 
NH4

+ through oxidation of AAs provides a competitive 
advantage to algae species capable of uptake (Tyler et 
al. 2005; Thornton 2014). While a wide range of algal 
taxa can release and consume amounts of DFAAs 
(Hounshell et al. 2017), the extent to which algae 
can use DFAAs as a source of nitrogen is still unclear 
(Flynn et al. 2008; Li et al. 2009). Furthermore, the 
quantification of AAs production in nature is difficult 
due to the interference of several specific factors that 
modulate their concentration such as a more ‘leaky’ 
cell membrane (Veldhuis et al. 2001), direct cell contact 
that can cause interference (Vardi et al. 2002), viral 
infection (Bettarel et al. 2005), feeding by predators 
(Møller 2007), physiological status (Flynn  et al.  2008), 
cell death (Orellana et al. 2013), short residence time 
and rapid turnover, growth curve (Sarmento et al. 
2013), and environmental conditions (Grosse 2017). 

The present study attempts to characterize the 
autochthonous algal AAs exudation to define its role 
as an alternative nutrient source that can contribute 
to the development of harmful algal blooms (HABs) 
in the environment. The experiment was designed 
to simulate algal bloom scenarios to characterize the 
extracellular AA production of different algal species 
from different classes during the active growth 
phase, i.e. the exponential phase. A set of laboratory 
experiments was established for: i) monocultures 
of both S. costatum Cleve (centric diatom) and  
S. trochoidea (Stein) Loeblich (thecate dinoflagellate), 
ii) healthy thalli of U. fasciata Delile (Chlorophyta) 
and C. officinalis Linnaeus (Rhodophyta), and iii) 
co-cultures of the tested phytoplankton species 

with different weights of macroalgae. This is the first 
research work to date in Alexandria waters aimed at 
expanding our understanding of bloom dynamics as 
a necessary step toward predicting and mitigating 
HABs. The selected phytoplankton species repeatedly 
formed blooms in Alexandria waters, for example  
S. costatum blooms were recorded there three times 
in 2000 (Mikhail & Labib 2014) and elsewhere (Horner 
et al. 2005), while S. trochoidea blooms were recorded 
in 1998 and 2014 (Labib 2002; El Shafay et al. 2019). 
Skeletonema costatum and Scrippsiella trochoidea 
can form harmful blooms. The harmful effects of 
S. costatum blooms include their large biomass, 
which causes various ecological disturbances such 
as lack of oxygen, i.e. hypoxia (Zhang et al. 2016), and 
water discoloration (Ibrahim et al. 2021). Moreover, 
the adverse effects include production of reactive 
aldehydes that negatively affect hatching copepods 
(Chen et al. 2021), as well as arsenite and dimethyl 
arsenic, which can block important biochemical 
pathways in algae, as arsenic is chemically similar to 
nitrogen and phosphorous (Howard et al. 1995). The 
first blooms of Scrippsiella trochoidea, documented in 
1890 and 1913 under the species name Glenodinium 
trochoideum, were associated with fish kills in Sydney 
Harbour (Whitelegge 1891). Under unique conditions in 
sheltered bays, blooms become very dense and cause 
death of fish and invertebrates from the depletion 
of oxygen (Hallegraeff 2002). A red tide in China, 
Japan, Korea, and Russia, observed by Sakamoto et al. 
(2021), killed fish and caused serious economic losses. 
The studied macroalgae occasionally form green 
tide mats (Labib et al. 2015), and co-occurrence of 
micro-macroalgal blooms is a common phenomenon 
(Hosny 2016). 

2. Materials and methods

Water samples and macroalgae species were 
collected during summer 2018 from the Qaitbey 
area located in the western vicinity of the Port of 
Alexandria, Egypt. The area has been identified as 
eutrophic with recurrent annual algal blooms (Labib 
2002). 

After isolation, cells of S. costatum and  
S. trochoidea were maintained in stock cultures in the 
f/2 medium prepared with aged and filtered offshore 
autoclaved seawater (Guillard & Ryther 1962) at 25°C, 
salinity 32–33 PSU, pH 8–8.2, under continuous light 
illumination of ~100 µE m-2 s-1, and bubbled with 
sterile filtered air. Derrien et al. (1998) recommended 
the use of continuous light illumination to ensure 
faster growth of S. trochoidea rather than the light/
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dark cycle. The growth was followed starting from the 
second day of incubation, and the daily cell density 
at approximately the same time was measured using 
a haemocytometer. Subsamples of each previously 
gently shaken cell suspension reaching ~1000 cells 
ml-1 for S. costatum and 300 cells ml-1 for S. trochoidea, 
which almost resemble their initial concentrations 
during early bloom stages recorded in the same 
area (Mikhail and Labib 2014), were distributed into 
polystyrene bottles with 150 ml of filtered seawater 
enriched with f/2 solution and cultured under the 
previously mentioned conditions. Exponential and 
stationary growth phases were identified daily by 
direct observation under a microscope (Kester et al. 
1967). Microalgae samples of 3 ml were preserved 
with acidic Lugol’s iodine; then samples were 
settled overnight, and counts were performed 
under a microscope (160 ×) in random fields using a 
haemocytometer to determine the phytoplanktonic 
algal growth (Utermöhl 1958). The early stage of the 
exponential growth phase was detected on day 2 in 
S. costatum cultures, and analyses were performed 
during four consecutive days. On the other hand, 
it took a relatively long time in gently shaken  
S. trochoidea cultures, which appear to require more 
time due to their slower growth rate (Dixon & Syrett 
1988). The cell-free culture medium of both species 
was collected during the exponential phase after 
filtration through 25 mm Whatman GF/C glass fiber 
filters under gentle vacuum (50 mm Hg) and stored 
in acid-washed vials at –20°C for a maximum of 7 days 
(Granum et al. 2002) until analysis of extracellular 
amino acids. Cell division per day of both species was 
calculated Guillard (1973). 

Fresh, adult U. fasciata and C. officinalis thalli were 
carefully washed in the field with seawater to dislodge 
attached biota and other extraneous matter and 
transported moist to the laboratory within 30 min. 
Morphological identification of species followed the 
checklist of Aleem (1993). In the laboratory, samples 
were gently brushed, rinsed with distilled water, and 
dried with absorbent paper at room temperature. 
Prior to experiments, each macroalgal species (10–15 
g fresh weight) was grown for 10 h in 1 l of fresh 
seawater under adjusted temperature (14–27°C) 
and salinity (26–32 PSU), with optima at 23°C and 32 
PSU (Xiao et al. 2016), and light regime, and cultures 
were bubbled with air at a rate of 2 l min-1, followed 
by control cultures for each species in F/2 medium. 
The progressive growth during the first week was 
determined by biomass estimation (Li et al. 2016). 
Algae during the growth phase were removed from 
the medium by filtration, and the filtrate was kept 
frozen until amino acids were analyzed. 

Microalgae and macroalgae co-culture experiments 
consisted in adding macroalgae of different weights 
(0.5 g, 1 g, and 2 g) to stock phytoplankton cultures 
obtained in the exponential phase, which were grown 
under the same previously mentioned conditions. 
After filtration of samples between days 3 and 5, the 
supernatant of the filtrated media with free amino 
acids was analyzed. The role of bacteria cannot 
be excluded as their existence reflects the natural 
environmental conditions. Dissolved free amino acids 
(DFAA) were analyzed in the Central Laboratory at 
the National Institute of Oceanography and Fisheries 
using High-Performance Liquid Chromatography 
(HPLC) according to a method published in Agilent 
Application Note (Henderson et al. 2000). Briefly, DFAA 
samples and amino acid standards solutions were 
derivatized with o-phthalaldehyde (OPA) and analyzed 
by RP-HPLC (Agilent 1260 Infinity II chromatographic 
system) with ultraviolet-visible detection (diode 
array detector, DAD). After derivatization, an amount 
equivalent to 2.5 µl of each sample was injected onto 
a Zorbax SB-C18 (5 µm, 150 × 4.6 mm, Agilent) at 40°C, 
and detection was performed at λ = 338 nm. Mobile 
phase A was 40 mM NaH2PO4, while mobile phase B 
was acetonitrile/methanol/water (45/45/10 v/v/v). The 
separation was achieved at a flow rate of 2 ml/min 
using a gradient program that allowed 1.9 min at 0% B, 
followed by an increase in eluent B to 57% at 18.1 min, 
and then reaching 100% B at 18.6 to 22.3 min. Finally, 
the eluent B level dropped to 0% between 23.2 to 26 
min. The concentrations of each DFAA in the samples 
were calculated from peak areas on chromatograms 
using response factors obtained from standards of 
amino acids (analytical grade, Sigma Aldrich, Louis 
Mo, USA), 17 amino acids in 0.1M hydrochloric acid, 
2.5 mM each: alanine, arginine, aspartic acid, glutamic 
acid, glycine, histidine, isoleucine, leucine, lysine, 
methionine, phenylalanine, proline, serine, threonine, 
tyrosine, valine, and 1.25 mM cystine.

2.1. Statistical analysis 

Statistical analysis was performed using software 
SPSS v. 26 (IBM Corporation, Armonk, NY, USA). 
Data were analyzed by one-way analysis of variance 
(ANOVA) at a significance level of p < 0.05. Where 
applicable, multiple comparisons were performed 
using Turkey’s test (HSD). Data are presented as mean 
± standard deviation (SD) of triplicate extractions. The 
three-letter abbreviation code denotes amino acids. 
In each row, different superscript letters represent 
significant differences between samples (p < 0.05) in 
XLSTAT version 2014.5.03, while the same superscript 
letters indicate no significant differences (p > 0.05). 
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3. Results 

3.1. Amino acids of phytoplankton species 

A sharp reduction in the total concentration 
estimated at 20.33% was measured in S. trochoidea
cultures compared with S. costatum. In general, the 
analyzed species presented similar amino acid profiles, 
although they showed significant differences (p < 0.05) 
in the amount and proportion of some AAs (Table 1). 
However, the tyrosine acid was found exclusively in 
S. costatum, accounting for 24.18–25.15% of the total 
AAs (Fig. 1). Of the nine AAs identified, alanine, lysine, 
and threonine acids were the most abundant and 
were responsible for the major quantity and quality 
fluctuations. However, the proportions of the main 
AAs were relatively higher in S. trochoidea. Other 
acids, such as cysteine, arginine, and methionine 
acids, were negligible. The average exponential 
division rate calculated from cell counts was 1.98 div. 
d-1 for S. costatum and 0.45 div. d-1 for S. trochoidea. 
Cell loss within 15–20% of S. costatum and 10–15% of 
S. trochoidea occurred during the last two days of the 
late exponential phase.

3.2. Amino acids of macroalgae species

The amino acid profiles revealed the presence of 
16 amino acids in healthy U. fasciata and C. officinalis
(Table 2). Irrespective of the species and despite the 
similarity between the amino acids, they showed 
limited changes in their concentrations, with these 
being slightly higher in C. officinalis (7.64%) due to an 
increase in glutamine acid by 23.22% and alanine acid 
by 32.49%. The relative contribution indicates aspartic 
acid from these two species as the main acid (total 
34.23% and 37.78%, respectively), while methionine, 
tyrosine, arginine, and isoleucine acids were of much 
lesser importance (Fig. 1).

3.3. Microalgae and macroalgae co-cultures

Nine AAs released in the co-culture of Ulva with 
S. costatum were identified (Table 3). However, the 
results revealed considerable variation in the content 
and relative contribution, with a consistent, rapid 
increase in production corresponding to increased 
Ulva weight. This increase was estimated to be 21.22 
and 31.76 times higher with the addition of 1 g and 2 
g compared with the lowest addition of Ulva. The AAs 
composition as a function of added weight exhibited 
a distinct change. Tyrosine and arginine acids were 
detected only with 0.5 g of Ulva, as were aspartic 
and cystine acids with 1 g of Ulva, methionine acid, 
although not detected with 0.5 g of Ulva, contributing 
the major fraction with 1 g and 2 g of Ulva (47.45% and 
59.12%), and lysine and threonine acids were common 

Table 1
Amount (mean ± SE) of amino acids in cultures of the 
microalgae Skeletonema costatum and Scrippsiella 
trochoidea (– denotes not detected)

S. costatum S. trohoidea
AAs Amount (µM l-1)

Alanine acid 3806.89 ± 0.25 894.74 ± 0.13
Arginine acid 463.47 ± 0.33 9.99 ± 0.15
Asparti c acid 408.86 ± 0.11 228.17 ± 0.35
Cysti ne acid 76.12 ± 0.09 2.01 ± 0.11
Glycine acid 525.17 ± 0.27 29.75 ± 0.10
Lysine acid 3035.79 ± 0.24 985.70 ± 0.09
Methionine acid 31.32 ± 0.12 16.17 ± 0.28
Threonine acid 1233.26 ± 0.21 402.65 ± 0.20
Tyrosine acid 3056.35 ± 0.17 ─

Figure 1
Percentage of amino acids in cultures of Skeletonema 
costatum, Scrippsiella trohoidea, Ulva fasciata and 
Corallina offi  cinalis

Table 2
Amount (mean ± SE) of amino acids in cultures of the 
macroalgae Ulva fasciata and Corallina offi  cinalis

U. fasciata C. offi  cinalis
AAs Amount (µM l-1)

Alanine acid 7260.56 ± 2847.28 10754.96 ± 3813.81
Argnine acid 2162.72 ± 527.49 1729.23 ± 823.44
Asparti c acid 13182.29 ± 12716.03 13116.83 ± 5123.76
Glutaamic acid 9423.27 ± 971.47 12273.30 ± 2012.02
Glycine acid 6179.2 ±1024.18 7633.91 ± 1272.32
Histi dine acid 4170.96 ± 534.74 3289.75 ± 406.14
Isoleucine acid 4634.40 ± 2165.61 4512.86 ± 1504.29
Leucine acid 8187.44 ± 1320.55 7844.79 ± 1973.53
Lysine acid 5406.8 ± 1374.61 4976.80 ± 473.98
Methionine acid 669.41 ± 514.93 590.47 ± 454.21
Phenylalanin aci 6797.116 ± 1699.28 6748.21 ± 1022.46
Serine acid 6745.62 ± 775.36 7338.68 ± 1120.41
Threonine acid 5252.31 ± 172.21 5145.51 ± 1513.38
Tyrosine acid 2626.16 ± 972.65 2699.28 ± 1587.61
Valine acid 4531.41 ± 66.15 5778.15 ± 2626.43
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with Ulva additions, contributing most with 1 g of 
Ulva. The relative contribution changed dramatically as 
alanine, threonine, and lysine acids dominated with 0.5 
g of Ulva, while methionine and phenylalanine acids 
were the significant major contributors with the other 
two additions. 

Consistent with the previous experiment, 
co-cultured U. fasciata and S. trochoidea (Table 4) 
showed the same production trend and almost 
unchanged compositional structure, with varying 
contribution. On the other hand, AAs yield was 
found to be about 10 times higher with 0.5 g of Ulva 
and much reduced with 1 g and 2 g of Ulva (56% 
and –45%). The composition of AAs exhibited an 
interesting feature characterized by the overwhelming 
dominance of isoleucine, with its highest contribution 
at the highest Ulva addition. Further, a trace proportion 
of proline acid was determined for the first time.

The effect of the red alga C. officinalis on the AAs 
production was tested in co-culture with S. costatum 
(Table 5). Compared with the Ulva culture with  
S. costatum, clear differences were observed such 
as a more diverse AAs composition (14 AAs), a lower 
relative content, a relatively lower effect of increasing 
weight and corresponding concentrations, and varied 
compositional structure of the major constituents. 
Except for the increased concentrations with 0.5 g of 
C. officinalis compared with the same addition of Ulva 
(2.35 times), the sharp reduction in content reaches 
55.7% and 96.92% after the addition of 1 g and 2 g, 
respectively. As for the AAs distribution according 
to C. officinalis weights, most of the detected AAs 
appeared with 1 g, and the least with 0.5 g. The results 
also indicated specific AAs composition with specific 
C. officinalis weights, leucine and isoleucine acids 
with 1 g, and glutamine acid with 2 g. The relative 

Table 3
Amount (means) and relative % of amino acids in co-cultured Skeletonema costatum and Ulva fasciata. Different letters 
indicate statistically significant differences between the treatments using Tukey’s test (– denotes not detected).

Amino acid
0.5 g Ulva 1 g Ulva 2 g Ulva

Amount % Amount % Amount %
Alanine acid 1143.99 ± 0.31 C 32.3 2207.81 ± 0.55 B 2.94 2710.52 ± 0.59 A 2.4
Arginine acid 334.73 ± 0.42 A 9.45 ─ ─ ─ ─
Aspartic acid ─ ─ 357.45 ± 0.25 A 0.48 ─ ─
Cystine acid ─ ─ 92.60 ± 0.13 A 0.12 ─ ─
Lysine acid 952.80 ± 0.51 C 26.91 3101.87 ± 0.13 A 4.13 2494.39 ± 0.29 B 2.22
Methionine acid ─ ─ 35663.01 ± 0.49 B 47.45 66497.70 ± 0.36 A 59.12
Phenyllalanin acid ─ ─ 33087.24 ± 0.06 B 44.03 40254.47 ± 0.50 A 35.79
Thereonine acid 1091.39 ± 0.44 A 30.82 643.31 ± 0.07 B 0.85 528.31 ± 0.59 C 0.47
Tyrosine acid 18.29 ± 0.47 A 0.52 ─ ─ ─ ─

Total AAs 3541.2 75153.29 112485.39

Table 4
Amount (mean ± SE) and relative % of amino acids in co-cultured Scrippsiella trochoidea and Ulva fasciata. Different 
letters indicate statistically significant differences between the treatments using Tukey’s test (– denotes not detected).

Amino acid
0.5 g Ulva 1 g Ulva 2 g Ulva

Amount % Amount % Amount %
Alanine acid 1028.73 ± 0.59 C 3.03 2476.80 ± 0.41 B 5.00 3590.29 ± 0.70 A 7.1
Arginine acid 1166.86 ± 0.46 A 3.44 908.10 ± 0.48 B 1.83 624.11 ± 0.29 C 1.23
Cystine acid 287.89 ± 0.39 A 0.85 3.32 ± 0.13 B 0.01 ─ ─
Glutamine acid 58.90 ± 0.16 B 0.17 1861.31 ± 0.33 A 3.76 ─ ─
Glycine acid 135.11 ± 0.48 B 0.4 4310.54 ± 0.56 A 8.70 113.29 ± 0.24 C 0.22
Isoleucine acid 28372.77 ± 0.12 C 83.64 35824.50 ± 0.36 B 72.31 46009.11 ± 0.16 A 91
Lysine acid 759.44 ± 0.51 B 2.24 3085.09 ± 0.25 A 6.23 74.46 ± 0.61 C 0.15
Phenylalanine acid 170.57 ± 0.41 A 0.5 38.63 ± 0.54 B 0.08 ─ ─
Proline acid ─ ─ 14.30 ± 0.08 B 0.03 129.81 ± 0.32 A 0.26
Thereonine acid 212.16 ± 0.23 B 0.63 1022.56 ± 0.33 A 2.06 16.59 ± 0.10 C 0.03
Tyrosine acid 1730.80 ± 0.08 A 5.1 ─ ─ 5.76 ± 0.06 B 0.01

Total AAs 33864.33 49545.15 50563.42
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contribution indicated significant dominance of 
isoleucine acid with 0.5 g, histidine and phenylalanine 
acids with 1 g, tyrosine acid with 2 g, and proline acid 
was still the smallest contributor. 

4. Discussion

During the active (exponential) growth phase, 
the AA analysis is an attempt to resemble an algal 
bloom situation, where such information is still scarce. 
Determining the specific growth phase where the 
largest production of AAs occurs is still a matter 
of debate and the mechanisms of AAs excretion 
by algae are still largely unknown (Franklin et al. 
2006). The exponential phase is the fastest growing 
phase among others (Bruckner et al. 2011; Orellana 
et al. 2013; Sarmento et al. 2013). S. costatum grew 
faster, exhibited a shorter exponential phase, and 
showed higher production of the dominant AAs 
compared to S. trochoidea, estimated at 4.25-fold for 
alanine and 3.06-fold for each lysine and threonine. 
The composition of AAs was uniform, more or less 
stable, but tyrosine acid was found exclusively in S. 
costatum, accounting for about one-fourth of total AAs 
(Martin-Jezequel et al. 1988). As previously reported 
(Vidoudez and Pohnert 2012; Sarmento et al. 2013), 
the variation in the amount and proportion of the 
released AAs is mainly determined by the species 
age and culture conditions. However, the AA relative 
frequency sequence differs from that reported for 

S. costatum by Martin-Jezequel et al. (1988), where 
glycine, aspartic, and glutamine acids dominate, 
respectively. However, these results are consistent with 
Mannino and Harvey (2000), indicating the significant 
contribution of alanine and threonine acids and lesser 
importance of aspartic and glutamic acids. Our data 
indicate a significant contribution of threonine acid in 
Skeletonema, which contradicts the data reported by 
Sarmento et al. (2013), similar to that for arginine acid 
in S. trochoidea (Meksumpun et al. 1994). Since arginine 
acid is a precursor to saxitoxin and gonyautoxin acids 
(Anderson & Harrison 1988), considering its rapid, 
lethal effects on shellfish and larvae (Tang & Gobler 
2012), the current changes in the composition may 
offer an advantage in preventing dinoflagellate red 
tide outbreaks. 

The study shows more diverse AA composition 
in macroalgae, homogeneity, predominance of 
aspartic, glutamine, alanine, and leucine acids, and 
limited changes in concentrations, slightly higher in 
C. officinalis (7.64%). The dominance of aspartic and 
glutamic acids was proven in Alexandria waters for the 
same examined macroalgae (Mustafa and Eladel 2015; 
Ismail 2017), previously documented elsewhere (Akgül 
et al. 2015). 

The main difference that distinguishes this 
work from others was the determination of AA 
production in multi-taxa cultures of phytoplankton 
and macroalgae species, where, to our knowledge, 
no experimental or field comparative studies are 
available for this combination of taxonomic groups. 

Table 5
Amount (mean ± SE) and relative % of amino acids in co-cultured Skeletonema costatum and Corallina officinalis. 
Different letters indicate statistically significant differences between the treatments using Tukey’s test (– denotes not 
detected).

Amino acid
0.5 g Corallina 1 g Corallina 2 g Corallina

Amount % Amount % Amount %
Alanine acid 95.69 ± 0.49 C 1.15 1160.92 ± 0.67 A 3.49 446.02 ± 0.54 B 12.86
Arginine acid ─ ─ 518.58 ± 0.21 A 1.56 357.46 ± 0.43 B 10.31
Aspartic acid 505.76 ± 0.13 A 6.07 439.55 ± 0.42 B 1.3 208.77 ± 0.20 C 6.02
Cystine acid 24.89 ± 0.23 B 0.30 62.02 ± 0.10 A 0.19 ─ ─
Glutamine acid ─ ─ ─ ─ 343.02 ± 0.13 A 9.89
Glycine acid 10.76 ± 0.37 C 0.13 709.10 ± 0.09 A 2.13 372.17 ± 0.62 B 10.73
Histidine acid ─ ─ 16414.45 ± 0.28 A 49.29 53.14 ± 0.55 B 1.53
Isoleucine acid 7645.42 ± 0.39 A 91.72 ─ ─ ─ ─
Leucine acid ─ ─ 4755.04 ± 0.72 A 14.28 ─ ─
Lysine acid 33.78 ± 0.65 C 0.41 475.03 ± 0.53 A 1.43 187.20 ± 0.16 B 5.4
Phenylalanine acid ─ ─ 7700.81 ± 0.54 A 23.12 ─ ─
Proline acid 6.05 ± 0.08 B 0.07 469.75 ± 0.47 A 1.41 ─ ─
Thereonine acid ─ ─ 598.52 ± 0.08 A 1.8 233.98 ± 0.21 B 6.75
Tyrosine acid 13.01 ± 0.47 B 0.16 ─ ─ 1266.52 ± 0.68 A 36.52

Total AAs 8335.36 33303.77 3468.28
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This study revealed considerable variation in the 
content, composition, and relative contribution of the 
released AAs compared with cultures of individual 
taxa. The substantial changes were similar to those 
reported for Ulva intestinalis by Lourenco et al. (2004). 
The sharp reduction in the number of AAs compared 
with monocultures of each species during their 
exponential phase (control) was estimated at 43.75% 
for U. fasciata, 25% for S. costatum, and 47.06% for  
S. trochiodea. A positive trend was observed 
between the weight increase in Ulva and C. officinalis 
in co-cultures with S. costatum, while it was less 
pronounced in co-cultures of Ulva with S. trochoidea, 
which may reflect some resistance. Kolmakovaa & 
Kolmakov (2019) reported significantly higher AA 
content in macroalgae compared to phytoplankton 
species. The co-culture experiments lasted only five 
days in an attempt to reduce and/or avoid potential 
causes responsible for the observed variations, which 
often remain elusive. Another cause may be the 
allelopathic effect of U. fasciata on the growth of S. 
costatum and S. trochiodea (El-Sheekh et al. 2010; EL 
Shafay et al. 2019), as U. fasciata is characterized by 
strong and quick allelopathic activity against these 
two potentially harmful species, and the growth 
inhibition occurred after six days of co-incubation. 
Since the algal cultures used were not axenic, the 
variation in AA production was probably modified by 
co-occurring prokaryotes, which is consistent with 
Bruckner et al. (2011) for diatom and bacteria cultures. 
The differential uptake and selectivity of amino acids 
proved similar among macroalgae and phytoplankton 
(Tyler et al. 2003), which may also be a significant 
cause (Kolmakovaa & Kolmakov 2019). Furthermore, 
the expected decrease in inorganic nitrogen content 
in the medium with no additional supply may also 
be responsible for the observed variation (Granum 
et al. 2002). Thus, such variation is mainly a direct 
result of the balance between uptake and release of 
AAs, however, the mechanisms affecting the release 
of dissolved AAs in such multispecific cultures need 
further studies. 

4.1. Ecological significance: Emphasis on bloom 
formation

Consistent with ecological significance, all the 
algal species tested have been reported to form 
recurrent red/green tides in some estuaries and 
coastal waters of Alexandria and elsewhere, with 
subsequent undesirable ecological effects. Most 
previous studies worldwide focused on the major 
contribution of eutrophication in coastal systems 
affecting the increased frequency, magnitude, or 

extension of HABs (Malone & Newton 2020). However, 
the processes driving the formation of blooms 
remain unclear, and a positive relationship between 
HABs and increased inorganic nutrient inputs of 
anthropogenic origin has never been convincingly 
demonstrated (Zingone & Waytt 2012). Recently, 
Mikhail et al. (2020) presented new evidence and 
alternative interpretations for Alexandria waters, which 
do not support the conclusions of previous studies. 
The authors concluded that the potential for bloom 
formation occurs even with low to intermediate values 
of inorganic nutrients (surface nitrate occasionally 
reaches 0.2 µM) when relative availability of dissolved 
organic matter (DOM) is high. This is supported by a 
significant correlation between DOM concentrations 
and abundance of bloom species, hence DOM is 
considered as an alternative nutrient source that may 
enhance the bloom formation, in particular in the 
case of dinoflagellates (Glibert et al. 2001), which is 
consistent with other studies (Tas & Yilmaz 2015; Liu et 
al. 2020). Phytoplankton autochthonous exudations, 
such as DFAA, have been identified as important 
contributors of DOM (Yamamoto et al. 2004; Thornton 
2014; Burpee et al. 2016). While their biological role 
in aquatic organisms and ecosystems is significant 
and diverse (Wu 2009), very little is known about 
their characteristics and accumulation during the 
development of algal blooms (Suksomj et al. 2009). 
The extracellular alanine, lysine, and threonine acids, 
present in Skeletonema and Scrippsiella filtrates during 
the active growth phase, can be released during their 
massive blooms in the natural environment. Given 
the high turnover rate of AAs in the water column 
and consequently the production of ammonia, AAs 
represent another pathway of nutrient acquisition 
and a substantial contributor to algal N demand in 
the environment. This process is important seasonally 
in estuaries (Bronk & Glibert 1993) to stimulate 
phytoplankton blooms (Hounshell et al. 2017) of 
specific causative species (Mulholland et al. 2002) and 
may provide, through selectivity of AAs, a significant 
portion of the total N demand in estuarine macroalgal 
blooms (Tyler et al. 2005). These data may therefore 
help shed light on bloom dynamics, leading to better 
implementation of optimal bloom prevention and 
control measures. Dissolved organic matter, which 
is released with the development of phytoplankton 
blooms, has a negative ecological impact in areas 
affected by algal blooms (Sellner & Nealley 1997), 
because it not only contributes, along with alanine, 
lysine, and threonine acids, to mucus formation during 
mucosal phytoplankton blooms, but also affects 
nutrient cycling, as already reported by Metaxatos et 
al. (2003).
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5. Conclusion

Since the coastal waters of Alexandria and 
elsewhere are affected by recurrent massive 
monospecific and/or multispecific blooms of 
phytoplankton and macroalgae, it seems likely that the 
release of AAs in the water column and the production 
of ammonia may contribute to the existence and long 
duration of these recurrent blooms. Alanine, lysine, 
and threonine acids released in monocultures of 
Skeletonema costatum and/or Scrippsiella trochoidea 
may contribute to the formation of mucilaginous 
phytoplankton blooms, with negative ecological 
consequences. Therefore, research on bloom dynamics 
is very important for coastal zone management. 
During the exponential phase in the co-culture of 
Skeletonema costatum and Scrippsiella trochoidea 
with Ulva fasciata and Corallina officinalis, a sharp 
reduction in the number of amino acids and inhibition 
growth of microalgae occurred, while weights of 
macroalgae increased, which implies that macroalgae 
are characterized by a strong and rapid allelopathic 
activity against these two potentially harmful species. 
Thus, these data can shed light on bloom dynamics, 
consequently leading to better implementation of 
optimal bloom prevention and control measures. Our 
findings may potentially have far‐reaching ecological 
implications.
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