**Oceanological and Hydrobiological Studies** 

International Journal of Oceanography and Hydrobiology

Volume 51, No. 4 December 2022

pages (308-324)

🗲 sciendo

ISSN 1730-413X eISSN 1897-3191

Summer distribution and community structure of surface water mesozooplankton from the eastern Mediterranean Sea

by

Melek Isinibilir<sup>1,\*</sup>, Vedat Aker<sup>2</sup>, Ezgi E. Türkeri<sup>1</sup>

DOI: https://doi.org/10.26881/oahs-2022.4.01 Category: Original research paper Received: March 18, 2022 Accepted: October 14, 2022

<sup>1</sup>Department of Marine Biology, Faculty of Aquatic Sciences, Istanbul University, Istanbul, Turkey

<sup>2</sup>Department of Marine Biology, Faculty of Fisheries, Ege University, Izmir, Turkey

## Abstract

The zooplankton community structure and its relationship with environmental parameters were evaluated in the surface waters (0–50 m) of the eastern Mediterranean (the Aegean Sea's coastal waters and the Levanine Sea's coastal and offshore waters), from coastal waters to open sea waters, during the summer for two years. A total of 157 species/groups were registered in the study area. Copepods, cladocerans, doliolids, meroplankton and appendicularians represented the most important zooplankton groups. Five copepod species (Corycaeus [Onychocorycaeus] ovalis, Goniopsyllus clausi, Oncaea scottodicarloi, Sapphirina bicuspidata and Scaphocalanus curtus) have been recorded for the first time in Turkish coastal regions; three species (Centropages bradyi, Goniopsyllus clausi and Oncaea scottodicarloi) had not previously been found in the Aegean Sea; and one species (Goniopsyllus clausi) has been added for the first time to the eastern Mediterranean fauna. Moreover, Pleopis schmackeri was already found to be present in both the Aegean Sea and Mediterranean coasts of Turkey in August 2006. Dominant species varied from the coastal waters to open waters. A small number of species belonging to the coastal community (e.g. Penilia avirostris, Pseudevadne tergestina, Oithona plumifera, Paracalanus parvus and Centropages kroyeri) dominated all coastal areas. In contrast, the open water stations were characterised by the presence of typically epipelagic species of the Mediterranean Sea (e.g. Calocalanus spp., Clausocalanus furcatus, Lucicutia flavicornis, Mecynocera clausi, Farranula rostrata, Oncaea scottodicarloi and Oncaea mediterranea).

**Key words:** eastern Mediterranean Sea, zooplankton, species diversity, abundance, first species record

online at www.oandhs.ug.edu.pl

<sup>\*</sup> Corresponding author: melekis@istanbul.edu.tr

# **1. Introduction**

The eastern Mediterranean basin is one of the most oligotrophic regions in the world, and has been described as a 'marine desert' due to its very low chlorophyll concentrations (Azov 1991, Krom et al. 1991, Antoine et al. 1995). Nutrient content, phytoplankton and zooplankton biomass, primary production and fish stocks are known to be higher in the northern Aegean Sea (Stergiou et al. 1997, Siokou-Frangou et al. 2002). Moreover, the composition of the mesozooplankton community was found to significantly differ between the northern and southern parts of the Aegean Sea (Sever 2009, Mazzocchi et al. 2014). The open marine areas of the Aegean and Levantine Seas (Siokou-Frangou et al. 2002, Aktan 2011), the two largest basins surrounding Turkey, have also been documented as oligotrophic. Although the Aegean Sea, which is one of the important basins of the Mediterranean, has an oligotrophic structure in general, it shows important biochemical differences between its north and south. Biodiversity, nutrient content and fishing activities were found to be higher in the northern Aegean Sea than in the southern Aegean Sea (Stergiou et al. 1997, Mazzocchi et al. 2014, Sever 2009). Furthermore, coastal domestic and industrial waste from major cities (such as Muğla, Antalya or Adana) as well as freshwater inputs from numerous small rivers results in local increases in biological production (Polat 2002, Kontas et al. 2004, Polat-Beken et al. 2009).

Basic knowledge of the structure of the zooplankton community and changes in species composition in different marine environments is still needed to better understand the ecological functioning of this basin. In general, although there have been various local studies on zooplankton communities, including information regarding their spatial and temporal variations along the eastern Mediterranean coastline (Benli et al. 2001, Isinibilir 2009, Isari et al. 2006, Protopapa et al. 2020, Sever 2009, Siokou-Frangou et al. 2009, Tarkan 2000, Terbiyik Kurt and Polat 2013, Toklu-Alıclı and Sarıhan 2016, Uysal and Shmeleva 2012, Zervoudaki et al. 2006), there is limited data from large-scale investigations in open waters (Mazzocchi et al. 1997, 2007, 2014; Molinero et al. 2009; Siokou-Frangou et al. 1997).

The fact that the area in question included various coastal areas as well as open sea made it ideal for studying the regional variation of zooplankton community composition. The aim of this research is to determine the main zooplankton distribution patterns and dominant species compositions in the eastern Mediterranean, especially Turkish coastal areas, and to expand our knowledge about the pelagic ecosystem.

# 2. Materials and methods

#### 2.1. Sampling and analysis

The study was carried out at 70 stations between 11 August and 4 September 2006 and between 10 July and 13 August 2008 in the Mediterranean Sea around the Turkish peninsula with the help of R/V YUNUS-S (Figure 1, Table 1). The northern Aegean Sea (NA) group was represented by 11 stations, the southern Aegean Sea (SA) by 19 stations, the coastal waters of the Levantine Sea (LSC) by 31 stations and the open waters of the Levantine Sea (LSO) by 9 stations. Temperature and salinity were also measured at each station with a SEABIRD CTD probe. Chlorophyll-a concentrations were measured synchronously with zooplankton sampling by Altuğ et al. (2007) and Aktan (2011). All samples were vertically collected by using a WP2 net (mesh size: 200 µm) from a depth of 50 m to the surface of the water column or from near the bottom to the surface if the station depth was less than 50 m. The filtered volume was measured with a Hydro-Bios flowmeter. After the tow, the net was carefully washed, and the sample was split into two with a Folsom splitter. The first half was used fresh for biomass measurements as the wet weight; the other half of each sample was fixed and preserved in a seawater-buffered formaldehyde solution (4% final concentration) for later determination of composition and abundance. Specimens were identified under dissecting microscope. Quantitative analyses а of commonly found species were performed on subsamples taken with a 1 ml Stempel pipette (at least three times). Rare species were identified from the whole sample. Cladocerans and copepods were identified at the species or genus level. All other taxa were identified to the lowest possible taxa. The pIONeer 65 multi-probe was used to assess water temperature, salinity and dissolved oxygen using the practical salinity scale. Seawater was filtered via Whatman GF/C glass fiber filters for chlorophyll analysis and then frozen until spectrophotometric examination took place after acetone extraction.

#### 2.2. Data analysis

Species diversity and dominance were estimated using the Shannon–Weaver formula (Zar 1984). The differences in physical and biological data (total zooplankton abundance and biomass) between areas were evaluated with ANOVA (SPSS v. 22). Differences in the zooplankton community were evaluated for spatial variation with similarities and multidimensional scaling (MDS) analysis by calculating log (x + 1)-transformed



## Figure 1

Mesozooplankton stations sampled in the eastern Mediterranean Sea

Table 1

| Stations data from the R/V YUNUS-S cruise in the eastern Mediterranean Sea |              |        |            |            |            |                 |
|----------------------------------------------------------------------------|--------------|--------|------------|------------|------------|-----------------|
| Station Number                                                             | Station Name | Region | Date       | Latitude   | Longitude  | Total Depth (m) |
| 1                                                                          | ΝΔ12         | ΝΔ     | 09.07.2006 | 39°48 534  | 26°05 552  | 21              |
| 2                                                                          | ΝΔ14         | NΔ     | 09.07.2006 | 39°57 309  | 26°04.095  | 18              |
| 3                                                                          | NA15         | NA     | 14 07 2006 | 40°20 166  | 26°11 921  | 210             |
| 4                                                                          | NA16         | NA     | 13.07.2006 | 40°28.113  | 26°25.471  | 500             |
| 5                                                                          | NA17         | NA     | 13 07 2006 | 40°32 624  | 26°40 386  | 100             |
| 6                                                                          | NA18         | NA     | 13.07.2006 | 40°35.344  | 26°46.041  | 66              |
| 7                                                                          | NA19         | NA     | 13.07.2006 | 40°35.259  | 26°28.501  | 47              |
| 8                                                                          | NA21         | NA     | 14.07.2006 | 40°15.223  | 25°54.840  | 69              |
| 9                                                                          | NA22         | NA     | 10.07.2006 | 40°09.890  | 25°39.306  | 80              |
| 10                                                                         | NA23         | NA     | 09.07.2006 | 40°05.774  | 25°51.762  | 33              |
| 11                                                                         | NA24         | NA     | 14.07.2006 | 40°10.954  | 26°01.935  | 37              |
| 12                                                                         | SA2          | SA     | 13.08.2006 | 38°08.154  | 26°33.985  | 29              |
| 13                                                                         | SA3          | SA     | 13.08.2006 | 38°08.244  | 26°36.985  | 48              |
| 14                                                                         | SA4          | SA     | 13.08.2006 | 37°45.866  | 27°03.787  | 175             |
| 15                                                                         | SA7          | SA     | 14.08.2006 | 37°20.167  | 27°19.735  | 35              |
| 16                                                                         | SA8          | SA     | 14.08.2006 | 37°23.148  | 27°25.281  | 10              |
| 17                                                                         | SA10         | SA     | 14.08.2006 | 37°16.121  | 27°22.479  | 57              |
| 18                                                                         | SA11         | SA     | 14.08.2006 | 37°09.935  | 27°30.949  | 40              |
| 19                                                                         | SA12         | SA     | 14.08.2006 | 37°09.456  | 27°30.705  | 30              |
| 20                                                                         | SA19         | SA     | 16.08.2006 | 36°59.901  | 27°43.143  | 42              |
| 21                                                                         | SA22         | SA     | 16.08.2006 | 36°57.650  | 28°12.234  | 28              |
| 22                                                                         | SA25         | SA     | 17.08.2006 | 36°37.123  | 28°01.498  | 30              |
| 23                                                                         | SA26         | SA     | 17.08.2006 | 36°33.041  | 28°12.594  | 35              |
| 24                                                                         | SA90         | SA     | 30.08.2006 | 37°15.916  | 27°36.263  | 9               |
| 25                                                                         | SA91         | SA     | 30.08.2006 | 37°16.197  | 27°34.244  | 12              |
| 26                                                                         | SA92         | SA     | 30.08.2006 | 37°15.045  | 27°33.695  | 16              |
| 27                                                                         | SA93         | SA     | 30.08.2006 | 37°15.968  | 27°29.061  | 20              |
| 28                                                                         | SA94         | SA     | 30.08.2006 | 37°14.461  | 27°22.980  | 57              |
| 29                                                                         | SA101        | SA     | 03.09.2006 | 37°09.697  | 27°22.617  | 30              |
| 30                                                                         | SA102        | SA     | 03.09.2006 | 37°19.104  | 27°13.245  | 49              |
| 31                                                                         | LSC30        | LSC    | 17.08.2006 | 36°31.608  | 29°07.381  | 28              |
| 32                                                                         | LSC31        | LSC    | 18.08.2006 | 36°15.583  | 29°24.560  | 40              |
| 33                                                                         | LSC32        | LSC    | 18.08.2006 | 36°01.141  | 29°30.148  | 1600            |
| 34                                                                         | LSC33        | LSC    | 18.08.2006 | 36°07.500  | 29°57.000  | 1009            |
| 35                                                                         | LSC37        | LSC    | 19.08.2006 | 36°13.200  | 32°18.537  | 38              |
| 36                                                                         | LSC38        | LSC    | 17.08.2006 | 36°03.573  | 32°52.445  | 15              |
| 37                                                                         | LSC44a       | LSC    | 20.08.2006 | 36°11722   | 33°45643   | 14              |
| 38                                                                         | LSC59        | LSC    | 22.08.2006 | 36°31.350  | 36°01.456  | 10              |
| 39                                                                         | LSC61        | LSC    | 22.08.2006 | 35°57.679  | 35°55.627  | 70              |
| 40                                                                         | LSC65        | LSC    | 23.08.2006 | 36°31.350  | 35°25.333  | 64              |
| 41                                                                         | LSC67        | LSC    | 24.08.2006 | 36°46.399  | 34°38.348  | 13              |
| 42                                                                         | LSC68        | LSC    | 24.08.2006 | 36°15.175  | 33°48.802  | 24              |
| 43                                                                         | LSC69        | LSC    | 24.08.2006 | 36°18.135  | 33°51.746  | 22              |
| 44                                                                         | LSC79        | LSC    | 26.08.2006 | 36°37.041  | 30°36.041  | 64              |
| 45                                                                         | LSC81        | LSC    | 26.08.2006 | 36°27.440  | 30°33.091  | 65              |
| 46                                                                         | LSC11        | LSC    | 16.07.2008 | 33°58.390  | 35°26.400  | 1430            |
| 47                                                                         | LSC12        | LSC    | 16.07.2008 | 33°49.593  | 35°27.400  | 500             |
| 48                                                                         | LSC13        | LSC    | 17.07.2008 | 34°14.900  | 35°36.188  | 210             |
| 49                                                                         | LSC14        | LSC    | 17.07.2008 | 34°01.295  | 35°35.487  | 512             |
| 50                                                                         | LSC15        | LSC    | 19.07.2008 | 34°26.603  | 35°43.626  | 264             |
| 51                                                                         | LSC16        | LSC    | 19.07.2008 | 35°12.823  | 35°09.197  | 1500            |
| 52                                                                         | LSC17        | LSC    | 21.07.2008 | 35°26.729  | 35°31.128  | 1397            |
| 53                                                                         | LSC18        | LSC    | 22.07.2008 | 35°35.023  | 35°19.122  | 1200            |
| 54                                                                         | LSC19        | LSC    | 22.07.2008 | 35°39.582  | 34°54.051  | 1050            |
| 55                                                                         | LSC20        | LSC    | 22.07.2008 | 35°42.463  | 34°35.265  | 160             |
| 56                                                                         | LSC21        | LSC    | 22.07.2008 | 35°55.443  | 34°17.898  | 840             |
| 5/                                                                         | LSC22        | LSC    | 22.07.2008 | 36°09.117  | 33°58.340  | /4              |
| 58                                                                         | LSC23        | LSC    | 23.07.2008 | 36°03.743  | 33°19.479  | 214             |
| 59                                                                         | LSC24        | LSC    | 23.07.2008 | 35°57.718  | 32°47.352  | 65              |
| 60                                                                         | LSC25        | LSC    | 23.07.2008 | 36°24.649  | 31°40.371  | 2000            |
| 61                                                                         | LSC26        | LSC    | 23.07.2008 | 36°43.412  | 30°58./11  | 350             |
| 62                                                                         | LSO2         | LSO    | 12.07.2008 | 35°40.9854 | 30°30.1947 | 1430            |
| 63                                                                         | LSO3         | LSO    | 13.07.2008 | 35*57.133  | 30°30.396  | 1200            |
| 64                                                                         | LSO4         | LSO    | 13.07.2008 | 35°26.2102 | 30°1.7999  | 2500            |
| 65                                                                         | LSO5         | LSO    | 13.07.2008 | 34°56.215  | 31°17.754  | 2500            |
| 66                                                                         | LSO6         | LSO    | 13.07.2008 | 34°22.300  | 31°49.50   | 2500            |
| 6/                                                                         | LSO7         | LSO    | 14.07.2008 | 34-17.513  | 32-35.914  | 2500            |
| 60                                                                         | LSU8         | LSU    | 14.07.2008 | 34 08.555  | 33 25.751  | 2500            |
| 09                                                                         | 1509         | LSU    | 14.07.2008 | 34 03.068  | 34 12.405  | 2500            |
| 70                                                                         | 12010        | LSU    | 14.07.2008 | 53 58.5/1  | 34 58.046  | 2500            |

70LSO10LSO14.07.200833°58.571NA: northern Aegean Sea; SA: southern Aegean Sea; LSC: coastal waters of the Levantine Sea; LSO: open waters of the Levantine Sea

abundance data on the basis of the Bray–Curtis similarity index. The differences between the samples were assessed by a one-way analysis of similarities (ANOSIM) permutation test. Using the similarities percentage procedure according to SIMPER was performed to determine the dominant species that contributed to the spatial differences in community structure. The MDS, ANOSIM and SIMPER procedures were performed using the software package PRIMER 6 (Clarke and Warwick, 1994).

# 3. Results

### **3.1. Environmental conditions**

The data were collected over two summers from the Aegean and Levantine Seas. The overall means of the environmental parameters are presented in Table 2. The among-region differences were clear for temperature ( $F_{3:69} = 137.29$ , p < 0.05) and salinity ( $F_{3:69}$  = 35.22, p < 0.05). The highest temperatures were recorded in the coastal waters of the Levantine Sea, with an average of 27.21 ± 1.63°C. Surface salinity showed a north-south gradient, with mean values ranging from 37.38 ± 1.28 to 39.15 ± 0.08 PSU. The highest salinity value (39.6 ppm) was recorded in the Antalya Bay (in Station LSC37) in the coastal waters of the Levantine Sea. While lower chlorophyll-*a* levels were recorded in the northern Aegean Sea (0.23 ± 0.17 µg l<sup>-1</sup>), chlorophyll-*a* levels were higher in the coastal waters of the southern Aegean Sea (0.89 ± 0.76 µg l<sup>-1</sup>).

# **3.2.** Zooplankton abundance and group and species composition

Taking all sampling stations into account, the zooplankton abundance values ranged between 123 and 23,931 ind m<sup>-3</sup>, while biomass values ranged between 80 and 3200 mg m<sup>-3</sup> (Figure 2). The highest mean abundance (4562 ind m<sup>-3</sup>) and biomass (748 mg m<sup>-3</sup>) values were detected in the southern Aegean

#### Table 2

Table 3

Mean values and standard deviations of environmental parameters in each sub-region of the eastern Mediterranean Sea

| Region                                    | Water temperature<br>(°C)                                                                                                                             | Water Salinity<br>(PSU)                                                                                                                                                                                        | Total Chlorophyll- <i>a</i><br>(µg.l⁻¹)                                                                                                                                                                                                                                               |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Northern Aegean Sea (NA)                  | 17.09 ± 1.37                                                                                                                                          | 37.38 ± 1.28                                                                                                                                                                                                   | $0.23 \pm 0.16^{a}$                                                                                                                                                                                                                                                                   |
| Southern Aegean Sea (SA)                  | 24.50 ± 1.88                                                                                                                                          | 39.09 ± 0.18                                                                                                                                                                                                   | $0.89 \pm 0.76^{b}$                                                                                                                                                                                                                                                                   |
| Coastal Waters of the Levantine Sea (LSC) | 27.21 ± 1.61                                                                                                                                          | 39.36 ± 0.14                                                                                                                                                                                                   | $0.87 \pm 0.69^{b}$                                                                                                                                                                                                                                                                   |
| Open Waters of the Levantine Sea (LSO)    | 22.26 ± 0.76                                                                                                                                          | 39.15 ± 0.08                                                                                                                                                                                                   | 0.56 ± 0.40 <sup>b</sup>                                                                                                                                                                                                                                                              |
|                                           | Region<br>Northern Aegean Sea (NA)<br>Southern Aegean Sea (SA)<br>Coastal Waters of the Levantine Sea (LSC)<br>Open Waters of the Levantine Sea (LSO) | RegionWater temperature<br>(°C)Northern Aegean Sea (NA)17.09 ± 1.37Southern Aegean Sea (SA)24.50 ± 1.88Coastal Waters of the Levantine Sea (LSC)27.21 ± 1.61Open Waters of the Levantine Sea (LSO)22.26 ± 0.76 | RegionWater temperature<br>(°C)Water Salinity<br>(PSU)Northern Aegean Sea (NA)17.09 ± 1.3737.38 ± 1.28Southern Aegean Sea (SA)24.50 ± 1.8839.09 ± 0.18Coastal Waters of the Levantine Sea (LSC)27.21 ± 1.6139.36 ± 0.14Open Waters of the Levantine Sea (LSO)22.26 ± 0.7639.15 ± 0.08 |

<sup>a</sup> Altuğ et al. 2007, <sup>b</sup> Aktan 2011

#### Species first recorded in the present study.

| Species                                             | Aegean Sea | Levantine Sea | Stations                                                                                                                                                                                                                                |
|-----------------------------------------------------|------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calocalanus elegans Shmeleva, 1965                  | *, A       | TL, L         | NA12, NA24                                                                                                                                                                                                                              |
| Candacia giesbrechti Grice & Lawson, 1977           | *, M, A    | -             | NA15                                                                                                                                                                                                                                    |
| Centropages bradyi Wheeler, 1901                    | +,*        | TL, L         | SA26                                                                                                                                                                                                                                    |
| Clausocalanus jobei Frost & Fleminger, 1968         | *, M, A    | TL, L         | NA12, NA15, NA16, NA17, NA18, NA19, NA21, NA24, SA10, SA101, SA102, SA11, SA12, SA2, SA3, SA4, SA7, SA22, SA26, SA94                                                                                                                    |
| Clausocalanus mastigophorus (Claus, 1863)           | *, M, A    | TL, L         | SA102, SA25, SA26                                                                                                                                                                                                                       |
| Clausocalanus parapergens Frost & Fleminger, 1968   | *, M, A    | TL, L         | NA19, SA4                                                                                                                                                                                                                               |
| Clausocalanus pergens Farran, 1926                  | *, M, A    | TL, L         | NA15, NA16, NA17, NA18, NA19, NA21                                                                                                                                                                                                      |
| Corycaeus (Onychocorycaeus) latus Dana, 1849        | TA, A      | #, L          | LSC11, LSC12, LSC16, LSC17, LSC19, LSC20, LSC21, LSC22, LSC24, LSC25, LSC26, LSO2, LSO3, LSO4, LSO5, LSO6, LSO7, LSO8, LSO9,                                                                                                            |
| Corycaeus (Onychocorycaeus) ovalis Claus, 1863      | *, A       | #, L          | NA16, NA22, SA4, SA25, SA102, LSC33, LSC79, LSO9                                                                                                                                                                                        |
| Goniopsyllus clausi Huys & Conroy-Dalton, 2000      | +, *       | #, μ          | NA14, NA15, NA17, NA21, NA22, NA24, SA10, LSC11, LSC22, LSC30, LSC79,<br>LSC81, LSO6                                                                                                                                                    |
| Oithona tenuis Rosendorn, 1917                      | *, M, A    | TL, L         | SA19, SA25, SA26                                                                                                                                                                                                                        |
| Oithona vivida Farran, 1913                         | *, A       | TL, L         | NA12, NA21, SA101                                                                                                                                                                                                                       |
| Oncaea curta Sars, 1916                             | *, M, A    | TL, L         | NA12, NA14, NA15, NA16, NA17, NA18, NA21, NA22, NA23, NA24, SA3, SA4, SA7,SA10, SA11, SA12, SA22, SA26, SA92, SA93, SA94, SA101, SA102                                                                                                  |
| Oncaea scottodicarloi Heron & Bradford-Grieve, 1995 | +,*        | #, L          | LSC12, LSC14, LSC16, LSC17, LSC18, LSC19, LSC20, LSC22, LSC31, LSC33, LSC65,<br>LSC79, LSC81, LSO2, LSO3, LSO4, LSO5, LSO6, LSO7, LSO8, LSO10 NA12, NA15,<br>NA17, NA18, NA19, NA21, NA23, NA24, SA10, SA101, SA2, SA3, SA4, SA11, SA19 |
| Pareucalanus sewelli (Fleminger, 1973)              | *, A       | TL, L         | NA19, NA22, NA24, SA2, SA3, SA25, SA94                                                                                                                                                                                                  |
| Sapphirina auronitens Claus, 1863                   | TA, A      | #, L          | LSC12, LSC18, LSC79, LSO7, LSO10                                                                                                                                                                                                        |
| Sapphirina bicuspidata Giesbrecht, 1891             | -          | #, L          | LSC11, LSC13, LSC61, LSC65, LSC81                                                                                                                                                                                                       |
| Scaphocalanus curtus (Farran, 1926)                 | *, A       | #, L          | NA18, LSC79, LSO6, LSO7                                                                                                                                                                                                                 |
| Scolecithricella dentata (Giesbrecht 1892)          | τα α       | # 1           | 15079 1506                                                                                                                                                                                                                              |

'+': first records for the Aegean Sea; '#': first records for Turkey's Aegean coast; '#': first records for the Turkish Levantine coasts; 'µ': first records for the Levantine Sea; '-': not found in that location. Previous records of the species in the Marmara Sea, the Turkish Aegean coasts, the Aegean Sea, the Turkish Levantine coasts and the Levantine Basin are indicated with 'B', 'M', 'TA', 'A', 'TL' and 'L' respectively (Hajderi 1995, Gücü et al. 2000, Ünal et al. 2000, Özel and Aker 2001, Aker 2002, Uysal et al. 2002, Isari et al. 2006, Uysal and Shmeleva 2012, Bakir et al. 2014, Razouls et al. 2005–2022)



#### Figure 2

Fluctuations in zooplankton abundance (ind m<sup>-3</sup>), biomass (mg m<sup>-3</sup>), number of species and dominance (D)

Sea (SA), especially in Station SA90, particularly due to *Penilia avirostris* and *Centropages kroyeri*, whereas the lowest mean abundance (307 ind m<sup>-3</sup>) and biomass (231 mg m<sup>-3</sup>) values were observed in the LSO (Table 4). A total of 157 taxa were registered in the study area, of which 112 were in Copepoda and 7 were in Cladocera. Copepods, cladocerans, doliolids, meroplankton and appendicularians represented the most important zooplankton groups in all stations. Among

meroplankton, the most important groups were larvae of Decapoda, Polychaeta, Mollusca and Cirripedia, together comprising 2.7% of the total abundance. Salps and siphonophores were also abundant in some areas, especially in the Aegean Sea; however, their relative abundance never exceeded 5%.

Generally, Copepoda was the most abundant group in the LSO area (Table 4), but the maximum abundance (11,757 ind m<sup>-3</sup>; Station SA90) was recorded in the

southern Aegean Sea (Figure 3). Paracalanus parvus, Acartia clausi, Centropages kroyeri and Temora stylifera were very important in the Aegean Sea; Clausocalanus furcatus, Oithona plumifera, Calocalanus pavoninus, Farranula rostrata and Calanopia elliptica were dominant in the stations of the Levantine Sea (Table 4). Candacia giesbrechti (Station NA15) and Acartia (Hypoacartia) adriatica (Stations NA17, SA2 and SA3) were found only in the Aegean Sea, while Sapphirina bicuspidata was recorded only on the eastern coasts of the Levantine Sea (Stations LSC11, LSC13, LSC61, LSC65 and LSC81). Calonopia elliptica and Parvocalanus elegans were only present in the coastal waters of the Levantine Sea, where Calonopia elliptica reached extremely high abundance (506 ind m<sup>-3</sup>) at Station LSC59. A total of 19 copepod species were recorded for the first time in the Aegean (15 species) and Levantine (8 species) coasts of Turkey. Five copepod species (Corycaeus (Onychocorycaeus) ovalis, Goniopsyllus clausi, Oncaea scottodicarloi, Sapphirina bicuspidate and Scaphocalanus curtus) were recorded for the first time in the Turkish coastal region, three (Centropages bradyi, Goniopsyllus clausi and Oncaea scottodicarloi) for the Aegean Sea and one (*Goniopsyllus clausi*) among the eastern Mediterranean fauna (Table 3).

Cladocera, with maximum abundance of 11,757 ind.m<sup>-3</sup> at Station SA90, had a higher percentage of mesozooplankton at the NA and SA stations (Table 4), but a much lower mean relative abundance was observed at the LSC and LSO stations (Figure 3). A total of 7 Cladocera species (Penilia avirostris, Pseudevadne tergestina, Evadne spinifera, Evadne nordmanni, Pleopis polyphemoides, Podon intermedius and Pleopis schmackeri) were identified in the present study. Among Cladocera Penilia avirostris was the dominant species, especially in coastal bays and areas in the sub regions of the study area, with a maximum abundance of 8778 ind m<sup>-3</sup> (at Station NA23) and of 8203 ind m<sup>-3</sup> (at Station SA90). Other Cladocera (in order of importance) followed: Pseudevadne tergestina and Evadne spinifera. Pleopis schmackeri was observed at both the SA and LSC stations, with a maximum abundance of 5.3 ind m<sup>-3</sup> (at Station SA101).

Although Doliolida species were also occasionally observed (a 50% occurrence), they did not significantly contribute to the total zooplankton abundance (Table

Table 4

Mean relative abundance (%), total abundance (ind m<sup>-3</sup>) and biomass (mg m<sup>-3</sup>) of dominant taxa within the total zooplankton in the Eastern Mediterranean Sea ('-': not found). Only taxa with a general contribution of >0.5% to the total zooplankton abundance are reported here.

|                                     | Eastern Mediterranean Sea |                          |                                           |                                        |  |  |
|-------------------------------------|---------------------------|--------------------------|-------------------------------------------|----------------------------------------|--|--|
|                                     | Aegea                     | an Sea                   | Levantine Sea                             |                                        |  |  |
|                                     | Northern Aegean Sea (NA)  | Southern Aegean Sea (SA) | Coastal Waters of the Levantine Sea (LSC) | Open Waters of the Levantine Sea (LSO) |  |  |
| Copepods                            | 28.7                      | 44.3                     | 77.0                                      | 86.8                                   |  |  |
| Acartia clausi                      | 7.82                      | 0.43                     | 0.10                                      | -                                      |  |  |
| Acartia negligens                   | -                         | 0.08                     | 0.81                                      | 3.43                                   |  |  |
| Calocalanus pavo                    | 0.01                      | 0.18                     | 0.68                                      | 1.25                                   |  |  |
| Calocalanus pavoninus               | 0.01                      | 0.19                     | 6.16                                      | 9.08                                   |  |  |
| Calocalanus styliremis              | 1.67                      | 0.11                     | 0.30                                      | 3.76                                   |  |  |
| Calonopia elliptica                 | -                         | -                        | 4.35                                      | -                                      |  |  |
| Centropages kroyeri                 | 0.41                      | 13.70                    | 2.06                                      | 0.01                                   |  |  |
| Centropages typicus                 | 2.55                      | 0.09                     | 0.00                                      | 0.00                                   |  |  |
| Clausocalanus furcatus              | 0.00                      | 0.55                     | 20.92                                     | 28.80                                  |  |  |
| Farranula rostrata                  | 0.43                      | 0.44                     | 0.71                                      | 12.03                                  |  |  |
| Lucicutia flavicornis               | 0.01                      | 0.00                     | 0.08                                      | 1.56                                   |  |  |
| Mecynocera clausi                   | 0.22                      | 0.10                     | 0.35                                      | 0.51                                   |  |  |
| Paracalanus denudatus               | 0.04                      | 0.11                     | 0.10                                      | 1.83                                   |  |  |
| Paracalanus nanus                   | 0.04                      | 0.09                     | 0.10                                      | 2.64                                   |  |  |
| Paracalanus parvus                  | 6.60                      | 19.03                    | 16.08                                     | 0.59                                   |  |  |
| Temora stylifera                    | 0.53                      | 5.38                     | 2.88                                      | 2.51                                   |  |  |
| Parvocalanus elegans                | -                         | -                        | 0.60                                      | -                                      |  |  |
| Oithona nana                        | 0.34                      | 0.50                     | 1.29                                      | 0.21                                   |  |  |
| Oithona plumifera                   | 2.93                      | 1.45                     | 15.23                                     | 9.37                                   |  |  |
| Oithona similis                     | 1.51                      | 0.05                     | 0.53                                      | 2.31                                   |  |  |
| Oithona tenuis                      | -                         | 0.03                     | 0.68                                      | 0.41                                   |  |  |
| Oncaea mediterranea                 | 0.21                      | 0.03                     | 0.03                                      | 1.37                                   |  |  |
| Oncaea media                        | 0.17                      | 0.33                     | 0.53                                      | 0.02                                   |  |  |
| Oncaea scottodicarloi               | 0.20                      | 0.03                     | 0.10                                      | 2.64                                   |  |  |
| Cladocera                           | 63.6                      | 43.4                     | 12.4                                      | 0.9                                    |  |  |
| Penilia avirostris                  | 58.65                     | 33.07                    | 4.60                                      | -                                      |  |  |
| Pseudevadne tergestina              | 3.10                      | 6.95                     | 3.05                                      | 0.11                                   |  |  |
| Evadne spinifera                    | 1.53                      | 2.67                     | 4.77                                      | 0.69                                   |  |  |
| Appendicularians                    | 2.1                       | 3.6                      | 2.8                                       | 1.4                                    |  |  |
| Doliolida                           | 3.2                       | 5.8                      | 2.6                                       | 0.0                                    |  |  |
| Chaetognaths                        | 0.7                       | 0.5                      | 1.2                                       | 2.6                                    |  |  |
| Meroplankton                        | 1.5                       | 2.9                      | 5.4                                       | 3.2                                    |  |  |
| Total abundance (ind m-3)           | 3231                      | 4562                     | 628                                       | 307                                    |  |  |
| Total biomass (mg m <sup>-3</sup> ) | 300                       | 748                      | 316                                       | 231                                    |  |  |







Fluctuations in dominant zooplankton groups in the sampling area

4, Figure 3). The abundance of meroplanktonic groups, including larvae of Bivalvia, Gastropoda, Polychaeta and Echinodermata, were higher in the gulfs and the coastal stations, whereas Appendicularia were an important group in SA, with a maximum abundance of 888 ind m<sup>-3</sup> at Station SA90 (Figure 3).

With regard to regions, 96 species were found in the NA, 98 in the SA, 124 in the LSC and 91 in the LSO. The increasing number of species from NA to LSC was more evident, except in LSO. The variability in the number of species within areas was greater in the SA and LSC regions. The most species (65 species) was recorded at Stations SA3 and LSC79 (Figure 2). The diversity index values varied between 3.7 bits (Station SA3) and 2.1 bits (Station LSC59) (Figure 2). The dominant species from the coastal waters differed from those in open waters.

| Group and Average | Species                    | Similarity-to-Standard | Per cent Contribution | Cumulative Per cent |
|-------------------|----------------------------|------------------------|-----------------------|---------------------|
| Similarity        |                            | Deviation Ratio        |                       | Contribution        |
| NA, 56.96         | Paracalanus parvus         | 7.59                   | 10.11                 | 10.11               |
|                   | Penilia avirostris         | 2.55                   | 10.09                 | 20.20               |
|                   | Oithona plumifera          | 3.17                   | 7.64                  | 27.84               |
|                   | Appendicularia             | 2.06                   | 6.73                  | 34.57               |
|                   | Centropages typicus        | 1.94                   | 6.38                  | 40.95               |
|                   | Acartia (Acartiura) clausi | 1.67                   | 6.33                  | 47.28               |
|                   | Doliolida                  | 1.64                   | 5.75                  | 53.03               |
|                   | Pseudevadne tergestina     | 1.44                   | 5.56                  | 58.58               |
|                   | Evadne spinifera           | 3.08                   | 5.55                  | 64.13               |
|                   | Calocalanus styliremis     | 1.25                   | 3.9                   | 68.03               |
|                   | Paracalanus parvus         | 4.16                   | 12.97                 | 12.97               |
|                   | Temora stylifera           | 6.28                   | 10.39                 | 23.37               |
|                   | Penilia avirostris         | 1.39                   | 8.88                  | 32.25               |
|                   | Oithona plumifera          | 1.95                   | 7.24                  | 39.49               |
| CA 40.94          | Evadne spinifera           | 1.67                   | 7.19                  | 46.68               |
| SA, 49.84         | Appendicularia             | 1.96                   | 7.16                  | 53.84               |
|                   | Pseudevadne tergestina     | 1.70                   | 6.89                  | 60.73               |
|                   | Clausocalanus furcatus     | 0.81                   | 3.5                   | 64.23               |
|                   | Farranula rostrata         | 0.91                   | 3.14                  | 67.38               |
|                   | Chaetognatha               | 0.91                   | 2.88                  | 70.25               |
|                   | Oithona plumifera          | 2.09                   | 12.71                 | 12.71               |
|                   | Clausocalanus furcatus     | 1.81                   | 12.30                 | 25.01               |
|                   | Paracalanus parvus         | 1.18                   | 9.97                  | 34.98               |
|                   | Evadne spinifera           | 1.69                   | 8.81                  | 43.79               |
| LSC, 50.03        | Calocalanus pavoninus      | 1.75                   | 8.77                  | 52.56               |
|                   | Pseudevadne tergestina     | 1.22                   | 5.82                  | 58.38               |
|                   | Temora stylifera           | 1.06                   | 4.88                  | 63.27               |
|                   | Appendicularia             | 0.91                   | 4.29                  | 67.55               |
| LSO, 65.80        | Clausocalanus furcatus     | 11.01                  | 12.52                 | 12.52               |
|                   | Farranula rostrata         | 9.95                   | 9.72                  | 22.24               |
|                   | Oithona plumifera          | 7.08                   | 9.43                  | 31.67               |
|                   | Calocalanus pavoninus      | 4.70                   | 8.69                  | 40.36               |
|                   | Calocalanus styliremis     | 7.16                   | 6.88                  | 47.24               |
|                   | Oithona similis            | 3.70                   | 5.48                  | 52.71               |
|                   | Chaetognatha               | 1.63                   | 4.30                  | 57.01               |
|                   | Siphonophora               | 1.24                   | 3.86                  | 60.87               |
|                   | Temora stylifera           | 1.2                    | 3.86                  | 64.73               |
|                   | Paracalanus denudatus      | 1.85                   | 3.84                  | 68.57               |

## Species contributing to within-group similarity as defined by SIMPER

# **3.3. Spatial patterns of zooplankton composition and diversity**

Cluster analysis (Figure 4) and MDS ordination (Figure 5) of the combined data from the subregions showed that the samples were clearly differentiated by region. The among-region differences were stronger when zooplankton abundance ( $F_{3:69}$  = 19.885; p < 0.05) and biomass ( $F_{3:69} = 7.629$ ; p < 0.05) were considered. The Tukey test indicated a difference in total biomass between the southern Aegean Sea and all other areas, while the zooplankton community structure in the subregions (NA and SA) of the Aegean Sea had significantly higher values than those of the Levantine Sea (LSC and LSO). While the highest zooplankton abundance value was recorded in the SA region, with an average of 4562  $\pm$  5523 ind m<sup>-3</sup>, lower values were recorded in LSO (307  $\pm$  132 ind m^-3) and LSC (628  $\pm$ 300). ANOSIM analysis (global R value = 0.517, p = 0.1%) showed significant correlations between the study sites regarding the zooplankton communities. It was determined that the structure of the zooplankton community in the LSO region differed from that of the NA region (ANOSIM R = 0.946). The within-group similarity (using SIMPER; Table 5) depending on the dominant species revealed a higher average similarity (more than 60%) within the LSO group, with *Clausocalanus furcatus* significantly contributing along with *Farranula rostrata* and *Calocalanus pavoninus*, due to their higher abundance. The lowest average similarity (49.84) was observed in the SA region. *Paracalanus parvus, Temora stylifera* and *Penilia avirostris* were relatively consistent species within SA.

SIMPER analysis showed that Appendicularia, Doliolidae, some Copepoda (such as *Paracalanus parvus*, *Acartia clausi*, *Centropages kroyeri* and *Centropages typicus*) and Cladocera (such as *Penilia avirostris*, *Pseudevadne tergestina* and *Evadne spinifera*) mostly contributed to dissimilarity among groups (Table 6). The species contributing to the dissimilarities

Summer distribution and community structure of surface water mesozooplankton from the eastern Mediterranean Sea



## Figure 4

Dendogram for the hierarchical clustering of the 70 stations using group-average linking of Bray–Curtis similarities calculated on log-transformed abundance data. NA: northern Aegean Sea; SA: southern Aegean Sea; LSC: coastal waters of the Levantine Sea; LSO: open waters of the Levantine Sea



#### Figure 5

MDS ordination plot of 70 stations in the study area. NA: northern Aegean Sea; SA: southern Aegean Sea; LSC: coastal waters of the Levantine Sea; LSO: open waters of the Levantine Sea

318

Melek Isinibilir, Vedat Aker, Ezgi E. Türkeri

### Table 6

Zooplankton species characterising the station groups, identified by clustering, determined by similarity percentage analysis (SIMPER), based on log-transformed abundance data and the Bray–Curtis similarity measure

| Groups and average  | Species                    | Average | Dissimilarity to standard | Percent      | Cumulative percent |
|---------------------|----------------------------|---------|---------------------------|--------------|--------------------|
|                     | Acartia (Acartiura) clausi | 2.23    | 1 57                      | 4.07         | 4.07               |
| 54.84               | Centropages typicus        | 2.23    | 1.88                      | 3 78         | 7.85               |
|                     | Penilia avirostris         | 1 99    | 1.00                      | 3.63         | 11 / 8             |
|                     | Temora stylifera           | 1.95    | 1.22                      | 3.05         | 1/ 98              |
|                     | Doliolida                  | 1.72    | 1.71                      | 3.5          | 19.23              |
|                     | Controngges kroueri        | 1.70    | 0.82                      | 2 11         | 21.25              |
|                     | Oithong similis            | 1.71    | 1.27                      | 2.88         | 21.33              |
|                     | Decudevadae teraestina     | 1.50    | 1.27                      | 2.00         | 27.02              |
|                     | Clausocalanus furcatus     | 1.54    | 1.25                      | 2.0          | 27.02              |
|                     | Calocalanus stylizamis     | 1.5     | 1.27                      | 2.74         | 23.70              |
|                     | Ptoropoda                  | 1.45    | 1.55                      | 2.04         | 21 72              |
| SA vic ISC          | Popilia avirostris         | 2.27    | 1.60                      | 2.32<br>E 01 | 54.75<br>E 01      |
| 58 01               | Contronggos krouori        | 2.37    | 1.09                      | 2.67         | 0.49               |
| 30.01               | Tamora stulifora           | 2.15    | 1 52                      | 3.07         | 9.40<br>12.1       |
|                     |                            | 2.1     | 1.00                      | 3.02         | 16.72              |
|                     | Annondicularia             | 2.1     | 1.55                      | 3.02         | 10.72              |
|                     | Appendicularia             | 1.96    | 1.51                      | 3.37         | 20.09              |
|                     |                            | 1.91    | 1.31                      | 3.29         | 23.38              |
|                     | Pseudevaane tergestind     | 1.89    | 1.14                      | 3.25         | 26.63              |
|                     | Dollolida                  | 1.88    | 1.12                      | 3.24         | 29.87              |
|                     | Calocalanus pavoninus      | 1.82    | 1.59                      | 3.13         | 33                 |
|                     | Pteropoda                  | 1.53    | 1.09                      | 2.63         | 35.63              |
| SA vs LSO           | Paracalanus parvus         | 4.13    | 3.5                       | 6.15         | 6.15               |
| 07.05               | Penilia avirostris         | 4.09    | 1.89                      | 6.1          | 12.25              |
|                     | Pseudevadne tergestina     | 3       | 1.64                      | 4.48         | 16./3              |
|                     | Evadne spinifera           | 2.56    | 1.9                       | 3.82         | 20.55              |
|                     | Appendicularia             | 2.29    | 1.67                      | 3.41         | 23.96              |
|                     | Temora stylifera           | 2.27    | 2.1                       | 3.39         | 27.35              |
|                     | Centropages kroyeri        | 2.06    | 0.77                      | 3.06         | 30.41              |
|                     | Doliolida                  | 1.89    | 1.11                      | 2.83         | 33.24              |
| LSC vs NA           | Penilia avirostris         | 3.66    | 1.89                      | 5.7          | 5.7                |
| 64.20               | Clausocalanus furcatus     | 3.13    | 2.42                      | 4.87         | 10.57              |
|                     | Acartia (Acartiura) clausi | 3.06    | 1.88                      | 4.77         | 15.34              |
|                     | Centropages typicus        | 2.85    | 2.35                      | 4.44         | 19.78              |
|                     | Doliolida                  | 2.75    | 1.97                      | 4.29         | 24.07              |
|                     | Calocalanus pavoninus      | 2.24    | 2.14                      | 3.48         | 27.55              |
|                     | Calocalanus styliremis     | 1.84    | 1.41                      | 2.87         | 30.42              |
|                     | Oithona similis            | 1.83    | 1.34                      | 2.85         | 33.27              |
| LSC vs LSO<br>56.67 | Paracalanus parvus         | 3.23    | 1.73                      | 5.69         | 5.69               |
|                     | Evadne spinifera           | 2.42    | 1.74                      | 4.27         | 9.96               |
|                     | Farranula rostrata         | 2.39    | 1.7                       | 4.21         | 14.17              |
|                     | Pseudevadne tergestina     | 2.18    | 1.6                       | 3.85         | 18.02              |
|                     | Calocalanus styliremis     | 1.82    | 1.75                      | 3.21         | 21.24              |
|                     | Paracalanus nanus          | 1.68    | 1.8                       | 2.96         | 24.2               |
|                     | Gastropoda                 | 1.64    | 1.32                      | 2.89         | 27.08              |
|                     | Appendicularia             | 1.6     | 1.3                       | 2.82         | 29.91              |
| NA vs LSO           | Penilia avirostris         | 4.67    | 2.77                      | 6.43         | 6.43               |
| 72.61               | Paracalanus parvus         | 3.43    | 4.13                      | 4.72         | 11.15              |
|                     | Clausocalanus furcatus     | 3.42    | 6.92                      | 4.71         | 15.86              |
|                     | Acartia (Acartiura) clausi | 3.23    | 2                         | 4.45         | 20.3               |
|                     | Centropages typicus        | 2.9     | 2.41                      | 3.99         | 24.3               |
|                     | Doliolida                  | 2.85    | 2.09                      | 3.92         | 28.22              |
|                     | Pseudevadne tergestina     | 2.72    | 1.9                       | 3.75         | 31.97              |
|                     | Calocalanus navoninus      | 2.38    | 3 33                      | 3 27         | 35.24              |

between pairs of station groups revealed that the LSO was significantly dissimilar to both the NA and SA (total average dissimilarity: 72.61% and 67.05%, respectively), due to the rarity and relative scarcity of some zooplankton species compared to those of other groups, including Penilia avirostris, Pseudevadne tergestina, Paracalanus parvus, Clausocalanus furcatus, Acartia clausi, Centropages typicus, Calocalanus pavoninus and Doliolidae. The average of the Bray-Curtis dissimilarities between all pairs of NA and SA groups was relatively lower (54.84%). The species that contributed the most to dissimilarity was A. clausi because of its high frequency (7.82%) and relatively higher abundance in the NA region, especially at stations NA23 (950 ind m<sup>-3</sup>) and NA18 (707 ind m<sup>-3</sup>). Additionally, the low-frequency species Oithona setigera (<1% occurrence in all regions) exhibited the highest abundance only in Station NA17 (154 ind m<sup>-3</sup>) of the northern Aegean Sea and Paracartia latisetosa was found only at two stations in the coastal waters of Levantine Sea (52 ind m<sup>-3</sup> at Station LSC67 and 13 ind m<sup>-3</sup> at Station LSC68), but there was no significant contribution to the dissimilarity (<1%) between regions.

# 4. Discussion

This study provides information about the abundance and distribution of the main zooplankton species in the Aegean and Levantine Seas. In the study, Paracalanus parvus, Acartia clausi, Centropages kroyeri, Oithona plumifera, Temora stylifera, Clausocalanus furcatus, Penilia avirostris, Evadne spinifera, Pseudevadne tergestina, Doliolidae and Appendicularia represented the most common and most abundant zooplankton taxa. Moreover, a total of 15 species were recorded in the study area for the first time, including 3 for the Aegean Sea, 1 for the eastern Mediterranean and 5 for the Turkish coastal areas. Corycaeus (Onychocorycaeus) ovalis, Goniopsyllus clausi, Oncaea scottodicarloi, Sapphirina bicuspidata and Scaphocalanus curtus were recorded for the first time in Turkish coastal regions, while Centropages bradyi, Goniopsyllus clausi and Oncaea scoottodicarloi were recorded for the first time in the Aegean Sea with this study. Goniopsyllus clausi was the new species for the Eastern Mediterranean fauna.

Unlike in previous years (Sever 2009), a gradual increase in mesozooplankton abundance from the northern Aegean Sea towards the southern part was observed. Previous studies (Siokou-Frangou et al. 2002, Zervoudaki et al. 2006) found that the entry of Black Sea water into the Aegean Sea via the Dardanelles caused a significant increase in phytoplankton and mesozooplankton biomass and abundance in the region. However, aquaculture and terrestrial inputs make a significant contribution to higher picophytoplankton biomass and productivity in the coastal waters of the southern Aegean and Levantine Seas (Aktan 2011, Polat 2002, Polat and Terbiyik 2013). These factors are favourable for Cladocera, primarily P. avirostris (Isari et al. 2007). Penilia avirostris were found in very high numbers in these regions, often exceeding 2000 ind m<sup>-3</sup>. Swarms of this species can be seen in the surface coastal waters and in shallow locations during the summer (Christou and Stergiou 1998, Gülsahin and Tarkan 2012, Killi and Sağdıc 2018). Some authors have suggested that temperature may play an important role in the population dynamics of P. avirostris (Atienza et al. 2007, Gieskes 1971, Onbé and Ikeda 1995). However, environmental conditions such as photoperiod, food availability, turbulence, crowding and predation seem to be key factors in population size (Stross and Hill 1968, Frey 1982, Fofonoff 1994). Also, Christou and Stergiou (1998) reported that salinity influences the amount and distribution of P. avirostris, despite its high salinity tolerance. Playing a different role in the pelagic food chain, P. avirostris is a species commonly found in tropical and subtropical seas that mostly feeds on nanoplankton (<15 µm) (Lipej et al. 1997). Therefore, P. avirostris plays an important role among bacterioplankton and higher level consumers. Lipej et al. (1997) reported that pico and nanoplanktonic autotrophs are abundant in the water column in the Adriatic Sea during the summer months, and that an increase in *P. avirostris* population occurs because it feeds effectively on these organisms. In addition, Turner et al. (1988) stated that this species on heterotrophic microflagellates, small feeds diatoms and autotrophic flagellates. The presence of these organisms in the study area (Aktan 2011) may have contributed positively to the dominance of P. avirostris in the environment. The other Cladocera species were found in much lower numbers when compared with Penilia avirostris. E. spinifera, P. tergestina and E. nordmanni were present all across the study area in low numbers. These three species have been found in both coastal and pelagic areas of the eastern Mediterranean (Mazzocchi et al. 1997, Christou and Stergiou 1998, Gülşahin and Tarkan 2012, Killi and Sağdıc 2018, Killi 2020). In this study, while P. intermedius and P. schmackeri were observed in both the Aegean Sea and the coastal regions of the eastern Mediterranean, Podon polyphemoides was found only in the Aegean Sea. However, Pleopis polyphemoides has been reported among the dominant Cladocera in the coastal areas of the

319

Mediterranean Sea (Siokou-Frangou 1996, Camatti et al. 2008, Gülşahin and Tarkan 2012, Terbiyik-Kurt and Yilmaz-Zenginer 2016, Killi and Sağdıc 2018, Killi 2020). *Pleopis schmackeri* was reported for the first time in İskenderun Bay, in the north-eastern Mediterranean in July 2012 (Terbiyik Kurt and Polat 2017) and later in August 2017 it was found in the entire Aegean coast of Turkey (Bariche et al. 2020). However, the present study demonstrates that *Pleopis schmackeri* (Poppe 1889) may have already existed in August 2006 along the coasts of both the Aegean Sea and the Mediterranean Sea of Turkey.

In the present study, a total of 112 copepod species were discovered, of which 97 were in the Levantine Sea and 88 in the Aegean Sea. The dominance of Clausocalanus furcatus, Oithona plumifera and Paracalanus parvus resulted in a comparable copepod species composition across practically the entire eastern Mediterranean. While C. furcatus has a global tropical/subtropical distribution (Frost and Fleminger 1968), O. plumifera is found mainly in warm waters as well as in temperate regions (Raymont 1983). C. furcatus and O. plumifera are the dominant species in a large area of the eastern Mediterranean (Toklu and Sarıhan 2003; Siokou-Frangou et al. 1997, 2004; Altuğ et al. 2011; Mazzocchi et al. 2014; Terbıyık Kurt and Yilmaz-Zenginer 2016). Furthermore, in late summer and autumn, C. furcatus and O. plumifera dominated in Mediterranean coastal areas, subjected to the influence of the open sea (Siokou-Frangou et al. 1998). They are thought to be typical of the Mediterranean epipelagic habitat, and populations have been found in both coastal and offshore regions (Siokou-Frangou et al. 1997, Ramfos et al. 2005, Altuğ et al. 2011, Aker 2015). These two species were found to be prevalent in a vast area between LSC and LSO, as well as in SA, according to our research. In temperate and warm seas, Paracalanus parvus has a remarkable range of distribution (Raymont 1983). The most important dominant species in the northern Aegean Sea are Paracalanus parvus, Acartia clausi and Penilia avirostris (Siokou-Frangou et al. 2009, Zervoudaki et al. 2006, Isari et al. 2005, Sever 2009, Isinibilir 2009, Altuğ et al. 2011, Aker 2015). These species are also found in high abundance and dominance in the Sea of Marmara (Isinibilir et al. 2008, 2011), and they could be transported into the northern Aegean Sea through the Black Sea outflow by the Çanakkale Strait (Altuğ et al. 2011).

The Aegean Sea, particularly the southern section, has larger relative abundances of Appendicularia, which are commonly linked with abundant particulate organic aggregates (Alldredge 1976), and thus play an essential role in pelagic food webs and carbon transfer downward (Gorsky et al. 1991). Their significant relative importance in the southern Aegean Sea suggests that the water column in these areas was richer in particulate organic material and, in general, smaller particles. The highest nutrient levels and the lowest transparency levels were found at several stations in the LSC region, due to local tourism, domestic sewage discharge, industrial wastewater and marina activities and marine traffic, as well as in the SA region, due to intensive aquaculture and limited water exchange with the sea (Aktan 2011).

Eutrophication may have an indirect effect on zooplankton species diversity through its effect on phytoplankton (Shiganova et al. 1998). The abundance of *Noctiluca scintillans* and herbivorous zooplankton species increases as phytoplankton biomass increases (Shiganova et al. 1998). Reduced chlorophyll-*a* and nutrients from inshore to open waters (Aktan, 2011) may have resulted in higher zooplankton species diversity in the research area. The coastal waters of the southern Aegean Sea and the Levantine Sea, which host mariculture and domestic inputs, had lower diversity values.

The cluster diagram (Figure 4) and MDS representation (Figure 5) showed that Stations NA17 and LSC59 were starkly different from the other sampling stations, mainly due to their low number of species and unique species composition. Both stations present very particular conditions, which most likely were responsible for their singularity in terms of the zooplankton. An interesting finding for Station NA17 was the registration of Acartia (Hypoacartia) adriatica, a species endemic to the Adriatic Sea and never recorded in other seas around the world (Belmonte and Potenza 2001). This species has also detected in the middle Aegean Sea (Aker 2002). LSC59 is located very close to the Iskenderun port, and it could be affected by high anthropogenic pressure; this seems to presuppose the existence of a relatively poor zooplankton community. Only some common and opportunistic taxa (for example, the well-known Paracalanus parvus or Calonopia elliptica) can form persistent populations in this disturbed environment. Calanopia elliptica, which is of Indo-Pacific origin, is present in the Levantine Sea (Lakkis 1976), but has not been observed in the western part of the Mediterranean Sea or the Atlantic Ocean (Uysal et al. 2002).

The current study provides information on broader forms of zooplankton community structure in the Eastern Mediterranean, ranging from coastal to open water areas. Detailed future investigations are required to better understand the impact of zooplankton on coastal ecosystems due to growing

anthropogenic and climatic pressures. Furthermore, the ecological significance of zooplankton, both in the oligotrophic eastern Mediterranean Sea and in coastal environments with changing trophic status, should be investigated further.

# **Acknowledgements**

We gratefully acknowledge the support and collaboration at sea of the captains and crews of the R/V YUNUS-S and all the academic participants in the research cruise carried out in the summers of 2006 and 2008 along the Turkish coastline of the eastern Mediterranean. Special thanks are due to Prof. Bayram Öztürk for providing the opportunity for the research cruise and to Dr N. Eda Topçu for the preparation of Figure 1. Furthermore, the present study was partly supported by the Research Fund of the Scientific and Technological Research Council of Turkey (Grant No. 105Y039).

## References

- Aktan, Y. (2011). Large-scale patterns in summer surface water phytoplankton (except picophytoplankton) in the Eastern Mediterranean. *Estuarine, Coastal and Shelf Science, 9(4)*, 551–558. https://doi.org/10.1016/j.ecss.2010.12.010
- Aker, H. V. (2002). Seasonal distribution of planktonic copepods in the Turkish coastal waters of the middle Aegean Sea. PhD. Ege University.
- Aker, H. V. (2015). Zooplankton of The Aegean Sea. In T. Katağan, A. Tokaç, Ş. Beşiktepe, B. Öztürk (Eds.), *The Aegean Sea Marine Biodiversity, Fisheries, Conservation and Governance* (176 – 187). Istanbul, Turkey: Turkish Marine Research Foundation (TUDAV).
- Alldredge, A. L. (1976). Discarded appendicularian houses as source of food, surface habitats, and particulate organic matter in planktonic environments. *Limnology and Oceanography*, 21(1), 14–23. https://doi.org/10.4319/ lo.1976.21.1.0014
- Altuğ G., Aktan, Y., Oral, M., Topaloglu, B., Dede, A., Keskin, Ç., Isinibilir, M., Cardak, M., & Çiftçi, P.S. (2007). Evaluation of biological diversity using biological and psycho-chemical data of the Northern Aegean Sea and Southern Marmara Sea. Istanbul, Turkey: The Scientific and Technological Research Council of Turkey. (TUBITAK 105Y039).
- Altuğ, G., Aktan, Y., Oral, M., Topaloglu, B., Dede, A., Keskin, Ç., Isinibilir, M., Çardak, M., & Çiftçi, P. S. (2011). Biodiversity of the northern Aegean Sea and southern part of the Sea of Marmara, Turkey. *Marine Biodiversity Records*, 4 (e65), 1–17. https://doi.org/10.1017/S1755267211000662
- Antoine, D., Morel, A., & André, J. M. (1995). Algal pigment

distribution and primary production in the eastern Mediterranean as derived from coastal zone color scanner observations. *Journal of Geophysical Research*, 100(C8), 16193–16209. https://doi.org/10.1029/95JC00466

- Atienza, D., Calbet, A., Saiz, E., & Lopes, R. M. (2007). Ecological success of the cladoceran *Penilia avirostris* in the marine environment: Feeding performance, gross growth efficiencies and life history. *Marine Biology*, 151(4), 1385– 1396. https://doi.org/10.1007/s00227-006-0578-8
- Azov, Y. (1991). Eastern Mediterranean e a marine desert? *Marine Pollution Bulletin, 23*, 225–232. https://doi. org/10.1016/0025-326X(91)90679-M
- Bakır, A. K., Katağan, T., Aker, H. V., Özcan, T., Sezgin, M., Ateş, A. S., Kocak, C., & Kirkim, F. (2014). The marine arthropods of Turkey. *Turkish Journal of Zoology*, *38(6)*, 765–831. https:// doi.org/10.3906/zoo-1405-48
- Bariche, M., Al-Mabruk, S., Ateş, M., Büyük, A., Crocetta, F., Dritsas, M., Edde, D., Fortič, A., Gavriil, E., Gerovasileiou, V., Gökoğlu, M., Huseyınoglu, F., Karachle, P., Kleitou, P., Terbıyık Kurt, T., Langeneck, J., Lardicci, C., Lipej, L., Pavloudi, C., . . Zangaro, F. (2020). New Alien Mediterranean Biodiversity Records (March 2020). *Mediterranean Marine Science, 21*(1), 129–145. https://doi.org/10.12681/mms.21987
- Belmonte, G., & Potenza, D. (2001). Biogeography of the family Acartiidae (Calanoida) in the Ponto-Mediterranean province. *Hydrobiologia*, 453/454, 171–176. https://doi. org/10.1023/A:1013192623131
- Benli, H. A., Tarkan, A. N., & Sever, T. M. (2001). Comparison of the mesozooplankton composition the southwestern Black Sea, Sea of Marmara and eastern Aegean Sea. *Turkish Journal of Marine Sciences*, 7(3), 163–179.
- Christou, E.D., & Stergiou, K.I. (1998). Modelling and forecasting the fortnightly cladoceran abundance in the Saronikos Gulf (Aegean Sea). *Journal of Plankton Research, 20*(7), 1313–1320. https://doi.org/10.1093/plankt/20.7.1313
- Clarke, K. R., & Warwick, R. M. (1994). An approach to statistical analysis and interpretation. *Change in marine communities*, 2(1), 117-143.
- Sebens, D. G. (1982). Contrasting strategies of gamogenesis in northern and southern populations of cladocerans. *Ecology*, 63(1), 223–241. https://doi.org/10.2307/1937046
- Frost, B., & Fleminger, A. (1968). A revision of the genus *Clausocalanus* (Copepoda Calanoida) with remarks on distributional patterns in diagnostic characters. University of California Press, Berkeley: Bulletin of the Scripps Institution of Oceanography.
- Fofonoff, P. W. (1994). Marine cladocerans in Narragansett Bay. Ph.D. Dissertation, University of Rhode Island, Kingston, RI, USA: 170 pp.
- Gieskes, W. W. (1971). Ecology of the Cladocera of the North Atlantic and the North Sea, 1960–1967. *Netherlands Journal of Sea Research, 5(3)*, 342–376. https://doi. org/10.1016/0077-7579(71)90017-2
- Gorsky G., Lins Da Silva, N., Dallot, S., Laval, Ph., Braconnot, J.C.,

Prieur, L. (1991). Midwater tunicates: are they related to the permanent front of the Ligurian Sea (NW Mediterranean)? *Marine Ecology Progress Series*, 74(2/3), 195-204.

- Gotsis-Skretas, O., Pagou, K., Moraitou-Apostolopoulou, M., & Ignatiades, L. (1999). Seasonal horizontal and vertical variability in primary production and standing stocks of hytoplankton and zooplankton in the Cretan Sea and the Straits of the Cretan Arc (March 1994–January 1995). *Progress in Oceanography, 44*(4), 625–649. https://doi. org/10.1016/S0079-6611(99)00048-8
- Gücü, A. C., Latif, M. A., Okyar, M., Özsoy, E., Uysal, Z., & Yılmaz, A. (2000). Ulusal Deniz Araştırma ve İzleme Programı, Akdeniz, Marmara Denizi, Türk Boğazlar Sistemi, Karadeniz ve Atmosfer Alt Projeleri. 1995–1999 Dönemi Sentez Raporu. TÜBİTAK. (in Turkish)
- Gülşahin, N., & Tarkan, A. N. (2012). Seasonal changes in distribution and abundance of the cladoceran species in relation to environmental factors in Gökova Bay (Mugla, Aegean Sea, Turkey). *Fresenius Environmental Bulletin*, 21(7a), 1853–1863.
- Hajderi, E. (1995). Osservazioni sui copepodi del Mare di Marmara. [in Italian]. *Biologia Marina Mediterranea, 2*, 541–542.
- Ignatiades, L. (1998). The productive and optical status of the oligotrophic waters of the Southern Aegean Sea (Cretan Sea), Eastern Mediterranean. *Journal of Plankton Research, 20*(5), 985–995. https://doi.org/10.1093/plankt/20.5.985
- Isari, S., Ramfos, A., Somarakis, S., Koutsikopoulos, C., Kallianiotis, A., & Fragopoulu, N. (2006). Mesozooplankton distribution in relation to hydrology of the Northeastern Aegean Sea, Eastern Mediterranean. *Journal of Plankton Research, 28(3),* 241–255. https://doi.org/10.1093/plankt/ fbi058
- Isari, S., Psarra, S., Pitta, P., Mara, P., Tomprou, M. O., Ramfos, A., Somarakis, S., Tselepides, A., Koutsikopoulos, C., & Fragopoulu, N. (2007). Differential patterns of mesozooplankters' distribution in relation to physical and biological variables of the northeastern Aegean Sea (eastern Mediterranean). *Marine Biology*, 151(3), 1035– 1050. https://doi.org/10.1007/s00227-006-0542-7
- Isinibilir, M. (2009). Summer mesozooplankton communities in the Turkish coastal waters of north Aegea Sea. *Journal* of *FisheriesSciences.Com*, *3(3)*, 237–242. https://doi. org/10.3153/jfscom.2009029
- Isinibilir, M., Kideys, A. E., Tarkan, A. N., & Yilmaz, I. N. (2008). Annual cycle of zooplankton abundance and species composition in Izmit Bay (the northeastern Marmara Sea). *Estuarine, Coastal and Shelf Science, 78(4),* 739–747. https:// doi.org/10.1016/j.ecss.2008.02.013
- Isinibilir, M., Svetlichny, L., Hubareva, E., Yilmaz, I. N., Ustun, F., Belmonte, G., & Toklu-Alicli, B. (2011). Adaptability and vulnerability of zooplankton species in the adjacent regions of the Black and Marmara Seas. *Journal of Marine Systems*, 84(1-2), 18–27. https://doi.org/10.1016/j.

#### jmarsys.2010.08.002

- Killi, N. (2020). Spatio-temporal variation in the distribution and abundance of marine cladocerans in relation to environmental factors in a productive lagoon (Güllük Bay, SW Aegean Sea, Turkey). Oceanological and Hydrobiological Studies, 49(4), 374–382. https://doi.org/10.1515/ohs-2020-0032
- Killi, N., & Sağdıç, O. (2018). Seasonal Distribution Patterns of Marine Cladocerans in the Surface Waters of Gulluk Bay. *Journal of Aquaculture Engineering and Fisheries Research*, 4(3), 120–147.
- Kontas, A., Kucuksezgin, F., Altay, O., & Uluturhan, E. (2004). Monitoring of eutrophication and nutrient limitation in the Izmir Bay (Turkey) before and after Wastewater Treatment Plant. *Environment International*, 29(8), 1057–1062. https:// doi.org/10.1016/S0160-4120(03)00098-9 PMID:14680888
- Krom, M., Kress, N., Brenner, S., & Gordon, L. (1991). Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. *Limnology and Oceanography, 36(3)*, 424–432. https://doi.org/10.4319/lo.1991.36.3.0424
- Kurt, T. T., & Polat, S. (2013). Seasonal distribution of coastal mesozooplankton community in relation to the environmental factors in Iskenderun Bay (north-east Levantine, Mediterranean Sea). Journal of the Marine Biological Association of the United Kingdom, 93(5), 1163– 1174. https://doi.org/10.1017/S0025315412001713
- Terbiyik Kurt, T., & Polat, S. (2017). Introduction of a new Indo-Pacific marine cladoceran to the Mediterranean Sea. *Mediterranean Marine Science, 18*(3), 517–523. https://doi. org/10.12681/mms.13885
- Lakkis, S. (1976). Considerations on the distribution of pelagic copepods in the eastern Mediterranean off the coast of Lebanon. *Acta Adriatica, 18,* 41–52.
- Lipej, L., Mozeti, P., Turk, V., & Malej, A. (1997). The trophic role of the marine cladoceran *Penilia avirostris* in the Gulf of Trieste. *Hydrobiologia*, *360(1-3)*, 197–203.
- Mazzocchi, M. G., Christou, E. D., Fragopoulu, N., & SiokouFrangou, I. (1997). Mesozooplankton distribution from Sicily to Cyprus (eastern Mediterranean). 1. General aspects. *Oceanologica Acta*, 20(3), 521–535.
- Mazzocchi, M. G., Christou, E. D., Di Capua, I., Fernandez de Puelles, M. L., Fonda-Umani, S., Molinero, J. C., Nival, P., & Siokou-Frangou, I. (2007). Temporal variability of *Centropages typicus* in the Mediterranean Sea over seasonal-to-decadal scales. *Progress in Oceanography*, 72(2-3), 214–232. https://doi.org/10.1016/j.pocean.2007.01.004
- Mazzocchi, M. G., Siokou, I., Tirelli, V., Bandelj, V., Fernandez de Puelles, M. L., Ak Örek, Y., de Olazabal, A., Gubanova, A., Kress, N., Protopapa, M., Solidoro, C., Taglialatela, S., & Terbiyik Kurt, T. (2014). Regional and seasonal characteristics of epipelagic mesozooplankton in the Mediterranean Sea based on an artificial neural network analysis. *Journal of Marine Systems*, 135, 64–80. https://doi. org/10.1016/j.jmarsys.2013.04.009

- Molinero, J. C., Vukanic, V., Lucic, D., Ibanez, F., Nival, P., Licandro, P., Calbet, A., Christou, E. D., Daly-Yahia, N., Fernandez de Puelles, M. L., Mazzocchi, M. G., & Siokou-Frangou, I. (2009). Mediterranean marine copepods: Basin-scale trends of the calanoid *Centropages typicus*. *Hydrobiologia*, *617(1)*, 41–53. https://doi.org/10.1007/s10750-008-9524-8
- Onbé, T., & Ikeda, T. (1995). Marine cladocerans in Toyama Bay, southern Japan Sea: Seasonal occurrence and day-night vertical distributions. *Journal of Plankton Research*, *17*(3), 595–609. https://doi.org/10.1093/plankt/17.3.595
- Özel, İ., & Aker, V. (2001). Seasonal changes in zooplankton of the İzmir bay. In: Symposium on National Water Products; Hatay, Turkey. Ser Publ Mustafa Kemal Univ 8: 155–162.
- Polat, S. (2002). Nutrients, Chlorophyll *a* and Phytoplankton in the Iskenderun Bay (Northeastern Mediterranean). *Marine Ecology (Berlin), 23(2)*, 115–126. https://doi.org/10.1046/ j.1439-0485.2002.02753.x
- Polat, S., & Terbiyik, T. (2013). Variations of planktonic chlorophyll-*a* in relation to environmental factors in a Mediterranean coastal system (İskenderun Bay, northeastern Mediterranean Sea). *Sains Malaysiana*, *42(10)*, 1493–1499.
- Polat-Beken, Ç., Tolun, L., Avaz, G., Dönertas, A., Ediger, D., Telli-Karakoç, F., & Tugrul, S. (2009). DPSIR applied to 4-large Turkish coastal cities: Mersin, Antalya, Izmir and Kocaeli, Proceedings of the International Workshop on the Impact of Large Mediterranean Coastal Cities on Marine Ecosytems, Alexandria, Egypt.
- Protopapa, M., Zervoudaki, S., Assimakopoulou, G., Velaoras, D., & Koppelmann, R. (2020). Mesozooplankton community structure in the Eastern Mediterranean Sea. *Journal of Marine Systems, 211*, 103401. https://doi.org/10.1016/j. jmarsys.2020.103401
- Ramfos, A., Somarakis, S., Koutsikopoulos, C., & Fragopoulu, N. (2005). Summer mesozooplankton distribution in coastal waters of central Greece (eastern Mediterranean).
  II. Species assemblages. *Journal of the Marine Biological* Association of the United Kingdom, 85(4), 765–774. https:// doi.org/10.1017/S0025315405011677
- Raymont, J. E. G. (1983). Plankton and productivity in the oceans: *Vol. 2.* Zooplankton (2nd ed.). Pergamon.
- Razouls, C., Desreumaux, N., Kouwenberg, J., & de Bovée, F. (2005-2022). Biodiversity of Marine Planktonic Copepods (morphology, geographical distribution and biological data). Sorbonne University, CNRS. Available at http:// copepodes.obs-banyuls.fr/en [Accessed August 21, 2022]
- Sever, T. M. (2009). Ege Denizi pelajik Kopepod Faunası ve Yaygın Türlerin Dağılımları. E.U. *Su Ürünleri Dergisi, 28*(3), 203–209.
- Shiganova, T. A. (1998). Invasion of the Black Sea by the ctenophore *Mnemiopsis leidyi* and recent changes in pelagic community structure. Fisheries Oceanography, 7(3- 4), 305-310. https://doi.org/10.1046/j.1365-2419.1998.00080.x

- Siokou-Frangou, I., Christou, E., Fragopoulu, N., & Mazzocchi, M. (1997). Mesozooplankton distribution from Sicily to Cyprus (Eastern Mediterranean). 2. Copepod assemblages. *Oceanologica Acta*, 20(3), 537–548.
- Siokou-Frangou, L., Papathanassiou, E., Lepretre, A., & Frontier, S. (1998). Zooplankton assemblages and influence of environmental parameters on them in a Mediterranean coastal area. *Journal of Plankton Research*, 20(5), 847–870. https://doi.org/10.1093/plankt/20.5.847
- Siokou-Frangou, I., Bianchi, M., Christaki, U., Christou, E., Giannakourou, A., Gotsis, O., Ignatiades, L., Pagou, K., Pitta, P., Psarra, S., Souvermezoglou, E., Van Wambeke, F., & Zervakis, V. (2002). Carbon flow in the planktonic food web along a gradient of oligotrophy in the Aegean Sea (Mediterranean Sea). *Journal of Marine Systems*, 33–34, 335–353. https://doi.org/10.1016/S0924-7963(02)00065-9
- Siokou-Frangou, I., Shiganova, T., Christou, E. D., Kamburska, L., Gubanova, A., Konsulov, A., Musaeva, E., Skryabin, V., & Khoroshilov, V. (2004). Mesozooplankton communities in the Aegean and Black Seas: A comparative study. *Marine Biology,* 144(6), 1111–1126. https://doi.org/10.1007/ s00227-003-1277-3
- Siokou-Frangou, I., Zervoudaki, S., Christou, E. D., Zervakis, V., & Georgopoulos, D. (2009). Variability of mesozooplankton spatial distribution in the North Aegean Sea, as influenced by the Black Sea waters outflow. *Journal of Marine Systems, 78(4)*, 557–575. https://doi.org/10.1016/j. jmarsys.2008.12.025
- Stergiou, K. I., Christou, E. D., Georgopoulos, D., Zenetos, A., & Souvermezoglou, C. (1997). The Hellenic seas: Physics, chemistry, biology and fisheries. *Oceanography and Marine Biology - an Annual Review*, 35, 415–538.
- Stross, R., & Hill, J. (1968). Photoperiod control of winter diapause in the fresh-water cladoceran, *Daphnia*. *The Biological Bulletin*, 134(1), 176–198. https://doi. org/10.2307/1539976
- Tarkan, A. N. (2000). Abundance and distribution of zooplankton in coastal area of Gökçeada Island (Northern Aegean Sea). *Turkish Journal of Marine Sciences*, 6(3), 201– 214.
- Terbiyik Kurt, T., & Polat, S. (2013). Seasonal distribution of coastal mesozooplankton community in relation to the environmental factors in Iskenderun Bay (northeast Levantine, Mediterranean Sea). Marine Biological Association of the United Kingdom. Journal of the Marine Biological Association of the United Kingdom, 93(5), 1163– 1174. https://doi.org/10.1017/S0025315412001713
- Terbiyik-Kurt, T., & Yilmaz-Zenginer, A. (2016). Zooplankton of The Turkish Part of the Mediterranean Sea. The Turkish Part of the Mediterranean Sea; Marine Biodiversity, Fisheries, Conservation and Governance. Turan, C., Salihoğlu, B., Özgür Özbek, E., Öztürk, B. (Eds.) Turkish Marine Research Foundation (TUDAV), Publication No: 43, Istanbul, Turkey, 136-151.

- Terbiyik Kurt, T., & Polat, S. (2017). Introduction of a new Indo-Pacific marine cladoceran to the Mediterranean Sea. *Mediterranean Marine Science, 18(3),* 517–523. https://doi. org/10.12681/mms.13885
- Toklu, B., Sarıhan, E. (2003). The Copepoda and Cladocera (Crustacea) Fauna Along the Yumurtalık-Botaş Coastline in Iskenderun Bay. *Ege Journal of Fisheries and Aquatic Sciences*, 20(1), 63-68.
- Toklu-Alıçlı, B., & Sarihan, E. (2016). Seasonal changes of zooplankton species and groups composition in Iskenderun Bay (North East Levantine, Mediterranean Sea). *Pakistan Journal of Zoology, 48(5),* 1395-1405.
- Turner, J. T., Tester, P. A., & Ferguson, R. L. (1988). The marine cladoceran *Penilia avirostris* and the "microbial loop" of pelagic food webs 1. *Limnology and Oceanography, 33(2)*, 245–255. https://doi.org/10.4319/lo.1988.33.2.0245
- Ünal, E., Shmeleva, A. A., Zagordnyaya, J., & Kideys, A. E. (2000).
   Zooplankton structure and copepod species of the Sea of Marmara in spring 1998. In: Ozturk, B., Kadıoglu, M., Ozturk, H. (Eds.), Marmara Sea 2000 Symposium. Turkish Marine Research Foundation (TUDAV) Publications 5, Istanbul, pp. 450–460.
- Uysal, Z., & Shmeleva, A. A. (2012). Species composition, abundance and biomass of Copepoda in plankton of the Northern Levantine Basin (Eastern Mediterranean). *Crustaceana*, *85*(*8*), 909–935.
- Uysal, Z., Kideys, A. E., Shmeleva, A. A., Zagorodnyaya, J. A., & Gubanova, A. D. (2002). Checklist of copepods (Calanoida and Podoplea) from the northern Levantine basin shelf waters. *Hydrobiologia*, 482(1-3), 15–21. https://doi. org/10.1023/A:1021253721682
- Zar, J. H. (1984). Biometrical Statistical significance of mutation frequencies, and the power of statistical testing, using the Poisson distribution journal. *Biometrical Journal. Biometrische Zeitschrift, 26*(1), 83–88. https://doi. org/10.1002/bimj.4710260116
- Zervoudaki, S., Nielsen, T. G., Christou, E. D., & Siokou-Frangou, I. (2006). Zooplankton distribution and diversity in a frontal area of the Aegean Sea. *Marine Biology Research*, *2*(3), 149– 168. https://doi.org/10.1080/17451000600702037