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Abstract

Sea� oor mapping is a fast developing multidisciplinary 
branch of oceanology that combines geophysics, geostatis-
tics, sedimentology and ecology. One of its objectives 
is to isolate distinct seabed features in a repeatable, fast 
and objective way, taking into consideration multibeam 
echosounder (MBES) bathymetry and backscatter data. 
A large-scale acoustic survey was conducted by the 
Maritime Institute in Gdańsk in 2010 using Reson 8125 
MBES. The dataset covered over 20 km2 of a shallow 
seabed area (depth of up to 22 m) in the Polish Exclusive 
Economic Zone within the Southern Baltic. Determination 
of sediments was possible based on ground-truth grab 
samples acquired during the MBES survey. Four classes of 
sediments were recognized as muddy sand, very � ne sand, 
� ne sand and clay. The backscatter mosaic created using 
the Angular Variable Gain (AVG) empirical method was 
the primary contribution to the image processing method 
used in this study. The use of the Object-Based Image 
Analysis (OBIA) and the Classi� cation and Regression Trees 
(CART) classi� er makes it possible to isolate the backscatter 
image with 87.5% overall and 81.0% Kappa accuracy. The 
obtained results con� rm the possibility of creating reliable 
maps of the sea� oor based on MBES measurements. Once 
developed, the OBIA work� ow can be applied to other 
spatial and temporal scenes.  

Key words: habitat mapping, multibeam 
echosounder, image processing, Object-Based Image 
Analysis, Classi� cation and Regression Trees, Southern 
Baltic, Angle Varied Gain, feature selection 
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Introduction

The rapidly evolving seabed mapping technology, 
related to multibeam echosounders and sidescan 
sonars, generates large amounts of data, which 
require time-consuming traditional analyses. For this 
reason, there is a need for automatic classification of 
sediment and seabed morphological forms, using the 
analysis of reflected acoustic signals from the bottom 
(e.g. Tęgowski & Łubniewski 2002), analysis of images 
created by the bathymetric model of the seabed, or 
maps of backscattered intensity of acoustic signals 
(e.g. Montereale Gavazzi et al. 2016). The analysis of 
seabed sediment composition, as a branch of marine 
geology, has recently had more and more in common 
with hydroacoustic swath measurements. Multibeam 
echosounder (MBES) surveys allow large areas of the 
seafloor to be investigated, which is not comparable 
with traditional sampling technologies. MBES collects 
two kinds of acoustic data: a bathymetric map and a 
backscatter intensity image of seafloor areas. While 
the former generates a precise bathymetric Digital 
Elevation Model (DEM) that represents seafloor 
geomorphology, the latter is equal to seafloor acoustic 
reflectivity, which is characterized by scattering of the 
acoustic wave by the seabed type (Lurton & Lamarche 
2015). 

Beyond the MBES bathymetry and backscatter 
characteristics of the seafloor, other important 
information on the seafloor is provided by traditional 
ground-truth samples acquired at point locations. 
In order to obtain a meaningful map of the seabed, 
samples often need to be processed at various stages 
of seafloor mapping. According to Diesing et al. (2016), 
seafloor mapping usually includes the following 
steps: pre-processing of a dataset, feature extraction, 
feature selection, classification, post-classification 
and evaluation of classifier performance. In this 
study, pre-processing of data involves processing of 
hydroacoustic data. The next two steps are described 
together in “Image processing”. Although this study 
deals with the broad application of Object-Based 
Image Analysis (“Image processing”), the use of 
segmentation-classification algorithms was sufficient 
to create a final map of seabed sediment composition, 
and therefore no post-classification of data was 
necessary. The final step, which involves an accuracy 
assessment, is described in “Accuracy assessment” 
section. 

The dataset presented in this paper comes from the 
survey that was conducted by the Maritime Institute in 
Gdańsk in 2010 on board the r/v Imor ship. Multibeam 
echosounder measurements and acquisition of 
ground-truth samples covered 20 km2 of the seafloor 

in the southern part of the Baltic Sea. Analysis of 
ground-truth samples allows to define four classes 
of the seabed, three of which were characterized 
by overlapping backscatter distribution. Despite 
difficulties, it was possible to process the data and 
obtain a good classification performance, which was 
confirmed by an accuracy assessment based on the 
error matrix.

Study Site

The hydroacoustic survey was conducted in the 
area located in the Polish Exclusive Economic Zone 
(EEZ), in the southern part of the Baltic Sea, north of 
the coastal village of Rewal. The location and basic 
parameters of the area are shown in Figure 1. 

According to Mojski (1995), the area is covered 
by recent marine fine- and medium-grained sands, 
mud and clay from different phases of the Baltic Sea 
development. General geomorphological features 
are the result of the glacier impact during the last 
glaciation, especially the deglaciation and current 
marine processes that have formed seabed deposits 
since the Littorina transgression until now (Pieczka 
1980; Gudelis & Jemielianow 1982). Geomorphologic 
structures include accumulation or abrasive plains, 
as well as shoals with varying thickness of recent 

Figure 1
Location of the Rewal study site within the Polish 
EEZ. Sources: our study, OpenStreetMap, European 
Environment Agency
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marine sand sediments. Clay in abrasive plain areas 
is often exposed, whereas muddy-clayey sediments 
from terminal post-glacial basins also occur 
locally. Accumulation plains are usually filled with 
muddy-clayey sediments from various phases of the 
Baltic Sea development, partly covered by sandbanks 
and sand waves, related to marine transgressions 
and recent processes that have not yet been fully 
understood (Pieczka 1980; Gudelis & Jemielianow 
1982).

Materials and methods

Data acquisition and processing

Data acquisition was performed from board 
of the research vessel Imor of the catamaran type, 
equipped with the multibeam echosounder (MBES) 
Reson Seabat 8125, the Trimble AG132 GPS positioning 
receiver (accuracy below 1 m), and the DMS-05 motion 
reference unit (MRU). 

MBES transmitted one wide acoustic beam 
with dimensions of 120 × 0.5° and receives 248 
beams, allowing to perform swath measurements 
with a maximum extent of 120 m width. With an 
operating frequency of 455 kHz, it covers a maximum 
swath width of 3.4 × operating depth. In perfect 
environmental conditions, it is possible to perform 
measurements with a resolution of up to 0.02 m. 
Backscatter signals registered by Reson Seabat 8125 
MBES have relative values. The shape of the angular 
dependence of the backscattered acoustic signal is 
strongly correlated with the sediment composition 
and seafloor morphology. Therefore, it was assumed 
that unitless features of angular dependence are still 
strongly correlated with the type of the bottom. All 
measurements were acquired and processed using the 
QPS QINSy (ver. 7.5) software. 

In order to properly interpret results of 
hydroacoustic measurements, they need to be 
supported by ground-truth data. A total of 19 samples 
were acquired during the hydrographic survey, using 
a Van Veen grab sampler and a VKG-3 vibrocorer. Due 
to practical reasons, locations of all samples were 
determined in target areas, focusing on all expected 
sediment classes. Table 1 gives a brief description of all 
ground-truth samples with their locations.

 Hydroacoustic data 

Bathymetric and backscatter data from MBES 
measurements were processed using the QPS QINSy 
(ver. 8.15) software with a grid resolution of 0.5 × 

0.5 m. Bathymetric processing was conducted in 
accordance with international standards, i.e. removal of 
acoustic artefacts. On the other hand, the backscatter 
mosaic was created using the combined QINSy-ArcGIS 
method.

In order to obtain a mosaic of backscattering 
intensity independent of incidence angles, the 
empirical method of Angle Varied Gain (AVG) was 
applied in the Rewal study area. AVG considers a 
defined number of seafloor scans in order to calculate 
an averaged angular response curve (QPS 2015). 
The curve is calculated based on averaged parts of 
backscatter values, separated for defined ranges of 
incidence angles. The outcome value of the corrected 
backscatter is then calculated based on values 
computed for a defined normalization range that 
should cover a portion of incidence angles, for which 
the angular response curve is assumed to be flat for 
all types of the seabed. Depending on the survey and 
research, the normalization range can take different 
sizes, from narrow (Lamarche et al. 2011) to wide 

Table 1
List of all ground-truth samples with their descriptions 
and locations. Sources: our study

ID Sediment type Class Type Latitude Longitude

VR 201 Very Fine Sand VFS training 54.105263 14.911653

VR 202 Fine Sand FS training 54.108030 14.911664

VR 203 Muddy Sand MS training 54.120947 14.911780

VR 204 Muddy Sand MS validation 54.127028 14.911643

VR 205 Very Fine Sand VFS training 54.111783 14.926790

VR 206 Very Fine Sand VFS training 54.114840 14.926752

VR 207 Fine Sand FS training 54.126588 14.926762

VR 208 Very Fine Sand VFS validation 54.120305 14.942225

VR 209 Fine Sand FS validation 54.110749 14.942321

VR 210 Very Fine Sand VFS validation 54.106412 14.972621

VR 211 Very Fine Sand VFS validation 54.122082 14.972553

VR 212 Muddy Sand MS validation 54.130222 14.972554

VR 214 Fine Sand FS validation 54.116665 14.987440

VR 215 Very Fine Sand VFS training 54.111829 14.987819

VR 216 Very Fine Sand VFS validation 54.109825 14.987764

VR 225 Muddy Sand MS training 54.125345 14.896156

VR 226 Very Fine Sand VFS training 54.118745 14.896162

VR 227 Clay C training 54.109162 14.896139

VR 228 Muddy Sand MS training 54.106042 14.896208
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(Fonseca et al. 2009). In this research, good results have 
been achieved by applying angles between 40 and 60 
degrees. In addition, the AVG filter was set to separate 
angles between 0.1 degree and to calculate an angular 
response curve based on 300 pings.

All backscatter intensity grids were then 
exported to a GeoTIFF format. The ArcGIS software 
was used to create an image mosaic from these 
files, which can be created from a dataset of grids 
that often overlap (Blondel 2009). Therefore, a few 
parameters of mosaicking must be defined. The 
following parameters were defined in this study: 
the “north–west” mosaic method, the “ascending” 
order and the “mean” mosaic operator (Esri 2016). 
The mosaic method defines which grid will be placed 
as the top image in the mosaic. The “north–west” 
mosaic method means that the image closest to the 
northwest corner of the mosaic would be positioned 
at the top. Another parameter, the “ascending” order, 
defines the type of sorting of image grids. There is 
also an option of reverse sorting, depending on the 
specific arrangement of image grids. The “mean” 
mosaic operator means that pixel values of all 
overlapping areas will be calculated as an average 
from all overlapping grids. Methods and parameters of 
mosaicking used in this study are obviously related to a 
specific arrangement of backscatter image grids in this 
dataset (Esri 2016). 

Image Processing

 Feature extraction and selection

A review of marine habitat mapping studies 
confirm that good predictive performance can often 
be achieved by considering secondary bathymetric 
and backscatter features and their proper selection 
(Diesing et al. 2016). Secondary features of bathymetry, 
like slope, rugosity (Sappington et al. 2007), aspect 
or the Bathymetric Position Index (BPI; Micallef et al. 
2012), as well as secondary features of backscatter, like 
commonly used Grey Level Co-occurrence Matrices 
(GLCM; Haralick et al. 1973) increase the dimensionality, 
which means that they may capture greater variability 
in primary data and they may add unique geospatial 
information to the data (Diesing et al. 2016). Sixteen 
bathymetric secondary features were extracted in this 
study: rugosity, slope, variance, aspect, northness, 
eastness, curvature, profile curvature, planar curvature, 
small-scale BPI, broad-scale BPI, bathymetry standard 
deviation, rugosity standard deviation, slope standard 
deviation, small-scale BPI standard deviation and 
broad-scale BPI standard deviation. The BPI allows to 
measure differences in DEM among specific locations 

and their neighborhood in relation to the overall 
bathymetric area (Wilson et al. 2007). The general 
attribute of BPI is its scale, which corresponds to 
certain regions with different morphological sizes. The 
units of scale are expressed in meters. 

An additional number of 9 backscatter secondary 
features were extracted in this study, including: 
backscatter standard deviation, GLCM parameters 
as mean, standard deviation, entropy, homogeneity, 
contrast, correlation, angular second moment and 
dissimilarity. In order to obtain a good classification 
accuracy, it was necessary to select important and 
eliminate correlated features. From many available 
techniques of feature selection, the embedded 
algorithm of Classification and Regression Trees 
(CART) was used in this study (Breiman et al. 1984). The 
applied feature selection algorithm attempts to find 
an optimal subset of features during the training part 
of the CART classifier. Statistical importance of a certain 
geostatistical or textural feature is computed for all 
splits of this feature in the decision tree. The results 
of the algorithm are presented in an array, showing 
the decisive power of features in a range within [0, 1], 
called the importance scores (Breiman et al. 1984).

 Object-Based Image Analysis

The constantly developing Object-Based Image 
Analysis is a relatively young branch in the recent 
marine habitat mapping literature (i.e. Lucieer 2008; 
Che Hasan et al. 2012a; Lucieer et al. 2013; Diesing et 
al. 2014; Montereale Gavazzi et al. 2016). Image objects 
allow to analyze geospatial data, considering not only 
pixel-based information, but also other measures 
of objects, like their texture, geometry, statistics 
and hierarchy, which may be especially useful in 
high-resolution geophysics and hydroacoustic data 
with large noise. The advantage of image objects is 
that it resembles the way people look at images (Hay & 
Castilla 2006). 

In general, the OBIA consists of two steps. The first 
step is to create image objects (or segments), applying 
segmentation algorithms. The second step is to classify 
generated segments, using various classification 
methods. 

The multiresolution segmentation algorithm, 
available in the Trimble eCognition software (Benz 
et al. 2004), is the main method that was used in this 
study to create image objects, similarly to some 
other object-based marine habitat mapping studies 
(i.e. Lucieer 2008; Lucieer & Lamarche 2011; Che 
Hasan et al. 2012). Image objects in this approach are 
created from one-pixel objects using the bottom-up 
region merging technique, based on their primary 
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features such as greyscale or shape (Benz et al. 
2004). Each merging step is performed on a pair of 
adjacent image objects with the lowest increase 
in heterogeneity. Scale is the main parameter of 
multiresolution segmentation, i.e. it is responsible 
for stopping the process of fusion of image objects 
after reaching the homogeneity criterion (Benz et 
al. 2004). This criterion can also be expressed as 
the minimum standard deviation of heterogeneity, 
which is defined as the relation between color, 
shape, compactness and smoothness of image 
objects. The parameters are grouped into weighted 
pairs: color/shape and smoothness/compactness. 
In this study, the color parameter corresponds to 
the relative value of backscatter intensity within 
the considered image object. The shape parameter 
consists of two remaining parameters: smoothness 
and compactness. While smoothness corresponds 
to the ratio between the border length of an image 
object and its bounding box, the compactness is 
related to the ratio between the border length of an 
image object and the square root of the pixel count 
inside the image (Benz et al. 2004). Parameters of 
both weighted pairs can be assigned to values from 
0.1 to 0.9 and the total value of each weighted pair 
is equal to 1. In practice, the eCognition software 
allows to define values of two parameters: shape 
and compactness, which are related to the other two 
parameters (i.e. shape 0.3 and compactness 0.6 mean 
the following values of all 4 parameters: shape 0.3, 
color 0.7, compactness 0.6, smoothness 0.4). Detailed 
equations of all heterogeneity parameters, including 
the scale parameter, are described in Benz et al. 2004. 
The scale parameter defines the size of created image 
objects in such a way that if it is larger, more objects 
can be merged together and larger objects (defined 
by heterogeneity parameters) can be enlarged (Baatz 
& Schäpe 2000). Therefore, the scale parameter is not 
characterized by any units.

In order to obtain reliable results, many scales 
of multiresolution segmentation have been tested, 
including intervals of 50 in the range of 50–1500. The 
following methodological steps (described further in 
this section) have been performed for the resulting 
dataset, up to the accuracy assessment step. Based 
on the best results of the error matrices, the most 
promising range of scale was selected to repeat the 
test for a more detailed scale interval. For the resulting 
narrower range of multiresolution segmentation 
scales, between 200 and 750, an interval of 20 was 
applied. At the end, including previous testing, for 
some specific ranges of scales, the results allow us to 
analyze the scale interval of 10 (for example, for scales 
240, 250 and 260). Other multiresolution segmentation 

parameters – shape and compactness were set to 0.1 
and 0.5, respectively. The same values were applied 
in other marine habitat mapping studies using the 
multiresolution segmentation method (Lucieer et al. 
2013; Diesing et al. 2014; Montereale Gavazzi et al. 
2016). Once created, segments can be classified based 
on specific features of objects using more or less 
complex classification algorithms. 

Five various methods of supervised classifica-
tion were tested in this study, one of which gave the 
best results. The majority of them belong to machine 
learning techniques and they include: Classification 
and Regression Trees (Breiman et al. 1984), Random 
Forest (Breiman et al. 2001), Support Vector Machine 
(Cortes & Vapnik 1995), K-Nearest Neighbor and Bayes. 
The common part of all algorithms is the two-step 
classification scheme: training and application of 
the classifier. The training means that the classifier 
algorithm learns the relationships between the 
backscatter image and the labelled ground-truth 
training data. The application means that the classifier 
uses the inferred function to map unclassified areas 
implicitly (Mehryar et al. 2012). 

Ground-truth data

Ground-truth samples were processed using 
granulometric analysis and sieves with mesh sizes 
of 16.0, 8.0, 4.0, 2.0, 1.0, 0.5, 0.25 and 0.125 mm. On 
the basis of grain-size composition, the sediments 
were classified according to the Wentworth scale 
(Wentworth 1922). For the purpose of supervised 
classification, ground-truth data were divided into 
two subsets: training and validation data. Of the total 
number of 19 samples, 11 samples (58%) were selected 
as a training subset and 8 samples (42%) as a validation 
subset in the most representative way possible in 
terms of the distribution of backscatter intensity 
values. The training subset was used as an input for the 
feature selection algorithm and supervised classifica-
tion. The validation subset was used as an input to 
assess the accuracy of classification results.

 Accuracy assessment

Accuracy assessment was applied to evaluate the 
classification results. Error matrices were calculated 
for all classes showing cross-tabulation between 
the classification results and ground-truth samples 
of each class (Foody 2002). The following ordinary 
measures of accuracy assessment were defined: user’s 
and producer’s accuracy, overall and Kappa accuracy 
(Cohen 1960). User’s accuracy is the relation between 
correctly classified objects and all ground-truth 
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possibilities. Producer’s accuracy is the relation 
between correctly classified reference pixels and all 
classified pixels (Story & Congalton 1986; Congalton 
1991). The overall accuracy is equal to the sum of all 
correctly classified instances in relation to all instances 
in the error matrix, whereas Kappa takes into account 
the possibility of the agreement occurring by chance 
(Cohen 1960).

 Results 

Seabed composition classes 

Based on the granulometric analysis of 
ground-truth samples and applying the Wentworth 
scale (Wentworth 1922), we distinguished 4 different 
classes of sediments: clay (C), muddy sand (MS), very 
fine sand (VFS) and fine sand (FS). The position of each 
sample was compared to its backscatter intensity 
characteristics, so it was possible to determine basic 
statistical parameters of backscatter intensity averaged 
for all classes. The result of the analysis is presented 
as a boxplot shown in Figure 2. Backscatter intensity 
values are presented in unitless numbers, as they were 
given by the manufacturer of the echosounder (see 
“Data acquisition and processing”).

Although there was only one sample of clay, all 
boxplot statistics for this class are equal. Nevertheless, 
the backscatter intensity for this class was the highest 
and amounted to 3826.68, making the class of clay 
distinctly different from the other seabed composition 
classes. Medians of other classes were similar, i.e. 

1324.48 for muddy sand and 1445.44 for fine sand. 
The main difference was then visible in the boxplot 
spread for all classes. The class of fine sand has the 
thinnest spread. The spread increases in the case of 
the very fine sand class, being the widest in the class 
of muddy sand. There is an overlapping distribution 
of backscatter intensity between the three mentioned 
classes. The class of fine sand is completely contained 
in the two remaining classes. After omitting the 
outstanding whiskers, the class of very fine sand is also 
contained in the muddy sand class. Therefore, except 
for the clay class, it is not possible to clearly separate 
the backscatter mosaic based on the statistical 
characteristics of the sediment classes. In this case, 
the use of secondary features of bathymetry and 
backscatter as well as advanced methods of classifica-
tion is justified.

Object-Based Image Analysis and supervised 
classification

The resulting bathymetry of the Rewal study site 
is presented in Figure 3A. The workflow described 
in section “Hydroacoustic data” enables the creation 
of the corresponding backscatter intensity layer 
presented in Figure 3B. The same figure presents the 
location of samples. According to section “Image 
processing”, 25 secondary features of bathymetry 
and backscatter were extracted. They were treated by 
the embedded feature selection algorithm of CART 
(Classification and Regression Trees; Breiman et al. 
1984) together with primary features to select the most 
relevant features. In this study, the result of the feature 
selection algorithm indicates two most important 
layers: backscatter and rugosity (Figs 3B and C). They 
reached the importance scores of 0.65 and 0.35, 
respectively (in the range from 0 to 1). Other features 
were not relevant, so they were not included in further 
analysis.

Various scales of multiresolution segmentation 
were tested and the best result was obtained for 
the scale parameter of 280. Out of the five tested 
methods of supervised classification, Classification 
and Regression Trees gave the best result (Fig. 3D). 
As shown in Figure 4, the CART algorithm produced a 
decision tree that separates the training samples from 
backscatter and rugosity layers. The plot shows the 
prediction that the C (clay) class is to be assigned to 
intensity values of the backscatter layer higher than 
or equal to 2788.15. For lower values, it is necessary 
to consider the secondary feature – rugosity. If the 
value of rugosity is lower than 1.59 × 10−6 (−5.7977 
in the logarithmic scale, according to Figure 4), then 
the object should be classified as the MS (muddy 

Figure 2
Distribution of the mean backscatter intensity in four 
ground-truth classes. Sources: our study
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sand) class. If the value is higher or equal, then the 
backscatter layer should be considered again. For 
values higher than or equal to 1299.09, the FS (fine 
sand) class should be assigned. Lower values should 
be matched with the VFS (very fine sand) class. The 
numbers and percentage values of the plot are related 
to the amount and ratios of the training samples 
corresponding to each class (Fig. 4).

Validation of data processing results

The habitat map generated using the OBIA and 
CART classifier is shown in Figure 3D. The accuracy 
assessment of this map, based on the validation of 
ground-truth samples, is shown in the error matrix 
(Table 2). It is worth noting that there was no sample 
for the clay (C) class validation, so producer’s and user’s 
accuracies were not determined for this class. Cells 
of the error matrix that belong to the C class were 
preserved due to possible misclassification. The error 
matrix shows that all validation samples were classified 
properly, except one – i.e. VFS misclassified as MS. This 
obviously has an effect on the overall accuracy – 87.5%, 
and Kappa coefficient – 81.0%.

Figure 3
A) result of bathymetric processing; B) result of backscatter processing and location of ground-truth samples, division 
into training and validation ground-truth samples; C) result of rugosity extracted as a secondary derivative of 
bathymetry; D) result of CART classi� cation based on Object-Based Image Analysis. Sources: our study

Figure 4
CART results. Sources: our study
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Discussion

The world’s seafloor has been mapped only in 
5–10% with a resolution comparable to onshore 
research (Wright & Heyman 2008), mainly in areas 
deeper than 10 m (Montereale-Gavazzi et al. 2016). 
Although the main device used for hydroacoustic 
measurements is a multibeam echosounder (MBES), 
bathymetry is not the most important feature for 
seabed mapping. The MBES provides additional 
information about the seafloor reflectivity, or 
backscatter of the returned acoustic signal, which is 
crucial for seabed mapping, but its availability is even 
more limited than that of bathymetric data. There are 
still no standards for MBES backscatter acquisition and 
processing, which is why hydroacoustic data collected 
during one survey is practically incomparable with 
others (Diesing et al. 2016). 

This study deals with the application of a complete 
methodological approach in order to process the 
multibeam echosounder backscatter data in one study. 
The methodology presented in this paper assumes 
the use of the QINSy-ArcGIS processing method, 
Object-Based Image Analysis and additional data from 
ground-truth samples. The in situ approach allows 
realistic and consistent categorical seafloor mapping 
(Lurton & Lamarche 2015).

Backscatter grids from the multibeam echosounder 
are often created using various implementations of 
the Geocoder engine (Fonseca et al. 2009). This engine 
makes it possible to apply the Angle Varied Gain (AVG) 
correction to minimize the ship’s along-track nadir 
effect and to maximize the contrast of the backscatter 
intensity image. Among others, the Geocoder engine 
is implemented in two most common commercial 

developments: Fledermaus Geocoder Toolbox (FMGT), 
and CARIS HIPS and SIPS software (Lurton & Lamarche 
2015). Both solutions are often used in habitat 
mapping. For example, FMGT was recently used to 
create backscatter images in the North Sea (Stephens 
& Diesing 2014), the Belgian part of the North Sea 
(Montereale Gavazzi et al. 2017), and the northern 
China (Li et al. 2017). Raw backscatter data were also 
processed using CARIS HIPS and SIPS, for example 
in the areas of Georges Bank in Canada (Brown et al. 
2011), Maltese Islands (Micallef et al. 2012), the Tasman 
Peninsula (Lucieer et al. 2013) and the Lagoon of Venice 
(Montereale-Gavazzi et al. 2016; Madricardo et al. 
2017). For comparison, in this research we applied the 
new Geocoder engine implementation in the QINSy 
software. All AVG and mosaicking parameters were 
tuned and selected carefully. Although the angular 
dependence of backscatter strength (Parnum 2007; 
Lurton & Lamarche 2015) could not be completely 
eliminated, the backscatter mosaic with angular 
dependence correction, created using this method, 
gave satisfactory results compared to the backscatter 
grid without any angular correction. The quality of 
backscatter mosaic was good enough to perform 
Object-Based Image Analysis on seabed sediments. 

The scale of multiresolution segmentation is 
a key parameter that may have a major impact 
on the accuracy of results (Benz et al. 2004). This 
phenomenon has been observed at a small scale in 
the Tasman peninsula object-based habitat mapping 
by comparing the accuracies for 30 and 60 scales 
(Lucieer et al. 2013). The multiresolution segmentation 
scale is defined as imperfect, therefore it is necessary 
to perform many segmentation-classification tunings 
in order to achieve the desired effect. In order to 
clearly define a value of the scale parameter, some 
statistical trials of its estimation were made (Drăguţ et 
al. 2010; Drăguţ et al. 2014). Nevertheless, multiresolu-
tion segmentation results should be visually assessed 
(Diesing 2016). However, after some unsuccessful 
applications of the ESP/ESP2 tool in this study, we have 
decided to use an iterative method of scale selection, 
as described in “Materials and methods”.

Although it is recommended to acquire and use as 
many ground-truth samples as possible, statistically 
more than 50 samples per class (Carlotto 2009), 
for practical and budget reasons this is not always 
possible during seabed mapping (Diesing et al. 
2016). Therefore, some studies present classification 
results after using a much smaller but representative 
number of ground-truth samples (Micallef et al. 2012; 
Montereale Gavazzi et al. 2017). A similar situation 
occurs in this study. Nevertheless, attention should 
be paid to potential sources of errors when many 

Table 2
Error matrix of the CART classi� cation based on the 
OBIA technique. MS – Muddy Sand, C – Clay, FS – Fine 
Sand, VFS – Very Fine Sand. Sources: our study

Reference Class
User MS C FS VFS Sum
MS 2 0 0 1 3
C 0 0 0 0 0
FS 0 0 2 0 2

VFS 0 0 0 3 3
Sum 2 0 2 4

Producer 1 unde� ned 1 0.75
User 0.666667 unde� ned 1 1
Overall Accuracy 0.875
KIA 0.809524
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significantly different classes of the seabed occur 
(Micallef et al. 2012; Diesing et al. 2016). 

In marine habitat mapping studies, the distribution 
of backscatter intensity between ground-truth classes 
usually shows some scattering (Stephens & Diesing 
2014; Montereale Gavazzi et al. 2017). In such a case, 
the correct use of advanced supervised classifiers 
should not cause any difficulties and the results may 
represent a high level of accuracy. The situation is more 
complex when the backscatter distribution of most 
classes overlaps. The results of this study show that 
the proper application of segmentation and classifier 
algorithms in the Object-Based Image Analysis can 
contribute to a high accuracy.

The exceptional accuracy of OBIA results in 
land-cover remote sensing is not always directly 
reflected in marine habitat mapping (Diesing et 
al. 2014; Montereale Gavazzi et al. 2016). There are 
many reasons for this, often related to difficulties 
in conducting research in a significantly different 
environment. Nevertheless, the quality of seabed 
mapping studies is constantly improving due to 
adaptation of good practices from land cover 
mapping, greater awareness of image processing 
techniques, and increased use of geostatistical 
secondary features (Diesing et al. 2016; Lecours et 
al. 2016; Li et al. 2016). One of them is rugosity that 
was selected in this study by the CART embedded 
feature selection algorithm. As mentioned in section 
“Image processing”, rugosity is a secondary feature 
of bathymetry, developed in this study on the basis 
of the methodology proposed by Sappington et al. 
(2007). The presented study confirms that even for 
a dataset with fuzzy boundaries between classes in 
terms of the distribution of backscatter intensity, the 
use of other secondary geostatistical layers can lead to 
a good accuracy assessment. Therefore, it is important 
to generate such features and use them in the proper 
selection. 

In the past, different decision trees were commonly 
used in seabed mapping (Dartnell & Gardner 2004; 
Rattray et al. 2009; Ierodiaconou et al. 2011; Che 
Hasan et al. 2012a; Che Hasan et al. 2012b; Huang 
et al. 2012; Stephens & Diesing 2014; Montereale 
Gavazzi et al. 2016), using both pixel-based and 
object-based approaches. The term “accuracy” is 
typically associated with the predictive performance 
of a map and a reference ground-truth dataset (Foody 
2002). A literature review of 20 publications on marine 
habitat mapping conducted by Diesing et al. (2016) 
shows that a validation subset of ground-truth data 
was used in 77% of the analyzed studies. The overall 
accuracy and the Kappa index were most frequently 
used. No error matrix was found in 2/3 of the studies. 

Che Hasan et al. (2012a,b) used the Quick, Unbiased 
and Efficient Statistical Tree (QUEST), a decision tree 
method based on image segmentation, resulting in 
the overall accuracy of 80.2% and the Kappa statistic of 
67%. The object-based CART method was investigated 
by Montereale Gavazzi et al. (2016), but the results 
were not described, because they were less promising 
compared to the K-NN (K-Nearest Neighbor) classifier. 
The remaining studies represent a pixel-based 
application of decision tree classifiers. For example, 
Dartnell & Gardner (2004) show results with the overall 
accuracy of 72%. The Kappa index was not calculated 
in this study. Ierodiaconou et al. (2001) evaluated the 
pixel-based type of the QUEST decision tree with the 
overall accuracy of 80% and the Kappa statistic of 
75%. The classification tree (CT) was used by Stephens 
& Diesing (2014) with the same overall accuracy and 
a lower Kappa coefficient (48%, but the highest of all 
tested classifiers). Huang et al. (2012) used the Boosted 
Decision Tree (BDT), a slightly different pixel-based 
method to calculate seabed sediment parameters. The 
error matrix and the overall or Kappa measures were 
not included in this case. Depending on the study, 
decision trees produced different results. The high 
accuracy obtained in this research (overall accuracy 
= 87.5%, Kappa = 81%) confirms the high usefulness 
of the Object-Based Image Analysis and the CART 
classifier. The range of the Kappa index is equal to 
[−∞, 1], and the result below 0.8 is interpreted as good, 
while close to 1 as very good. 

Conclusions

The paper presents the general workflow of 
backscatter mosaic processing with the angular 
dependence correction, using common processing 
software for a multibeam echosounder dataset. For 
the first time in the peer-reviewed literature, we have 
described the QINSy-ArcGIS method for multibeam 
backscatter data processing, including the application 
of the AVG correction of the Geocoder engine in the 
QINSy software. Depending on the size of the dataset, 
the QINSy-ArcGIS method can be time-consuming, but 
in some cases it may be the only way to produce or 
reprocess a good quality backscatter mosaic based on 
limited or few-years old backscatter MBES data. Once 
created, it can be successfully fitted to other MBES 
datasets, reducing the total processing time.

The results of this research confirm the high 
usefulness of the methods of Object-Based Image 
Analysis and decision trees, including Classification 
and Regression Trees (CART). Tuned and properly 
applied Object-Based Image Analysis can be used 
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as a powerful tool to create a meaningful map of 
seabed sediments, even for ground-truth classes with 
overlapping backscatter distribution. In this case, 
another layer beyond backscatter can improve the 
classification accuracy. The use of OBIA, including 
CART and the feature selection tool, produces good 
accuracy assessment results (overall accuracy = 87.5%, 
Kappa = 81%). Therefore, we propose to add the CART 
algorithm to other classification methods used in 
future comparative studies.
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