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Wstep

Gdy mowimy o cieple, zwykle myslimy
o czyms bliskim i znajomym — o temperatu-
rze powietrza, filizance goragcej kawy czy cie-
ple promieniujgcym z kaloryfera. Jednak
prawdziwa historia ciepta zaczyna sie znacz-
nie wczesnigj, jeszcze przed powstaniem
Stonca, Ziemi i zycia na niej. Rozpoczyna sie
w chwili, gdy Wszechswiat byt jeszcze bez-
ksztattnym utamkiem sekundy, gdzie domi-
nowaty promieniowanie i plazma cza-
stek(Brown, 2012; Mohapatra, 2021).

Tuz po Wielkim Wybuchu (ang. Big Bang),
okoto 13,8 miliarda lat temu (Ryc. 1), Wszech-
Swiat znajdowat sie w stanie ekstremalnego
zaru i stygt wraz z ekspansja (Brown, 2012).
Zgodnie z modelem Gorgcego Wielkiego
Wybuchu, opracowanym w 1948 roku przez
Alphera, Ralpha i Gamowa, moéwimy o tem-
peraturach skrajnie wysokich; okoto jednej
sekundy po wybuchu wynosity one
~10 mid K'. Byty to tak wielkie wartosci, ze

1K - kelwiny
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materia istniata w postaci plazmy (Mohapa-
tra, 2021). Nie mozna byto zatem jeszcze
mowi¢ o cieple w takim sensie, jak rozu-
miemy je obecnie — pojecia temperatury
i wymiany energii dotyczyly wtedy gtownie
promieniowania i plazmy, a nie ,codziennej”
materii skondensowanej (Hawking, 2018;
Uzan, 2021). Jednak wtasnie wtedy rozpoczat
sie proces, ktory bedzie pdzniej definiowat
istnienie materii: powolne ochtadzanie (Haw-
king, 2018).

Wraz z ekspansjg przestrzeni, tempera-
tura gwattownie spadata. Po jednej sekun-
dzie od poczatku czasoprzestrzeni, Wszech-
swiat byt chtodniejszy niz w chwili wybuchu —
jego temperatura wynosita okoto 10 mld K.
To nadal tysigce razy wiecej niz temperatura
wnetrza Stonca, ale wystarczajgco mato, by
pojawity sie pierwsze czastki: protony i neu-
trony. Gdy zegar kosmiczny wskazat okoto
100 sekund, czastki te zaczety sie taczy¢
w proste jagdra atomowe — najpierw deuteru,
a nastepnie gtownie helu (ze $ladowa do-
mieszka litu i berylu). Ciepto, ktére wczesniej
rozdzielato i niszczyto wszelkie struktury, te-
raz zaczeto umozliwia¢ ich powstawanie
(Mohapatra, 2021).
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Ryc. 1 Etapy rozwoju Wszechs$wiata (Zrddfo: Zintegrowana Platforma Edukacyjna)

Pozniejsze ochtadzanie, trwajace przez
kolejne setki tysiecy lat, pozwolito na po-
wstanie atomow. Wtedy tez Wszechswiat stat
sie przezroczysty. Wczesniej promieniowanie
rozpraszato sie nieustannie na swobodnych
elektronach. Jednak, gdy elektrony potaczyty
sie z jadrami, fotony mogty zacza¢ swobod-
nie sie poruszac. Promieniowanie, ktére do-
tarto do Ziemi z tego momentu, znane jest
dzis jako kosmiczne mikrofalowe promienio-
wanie tfa. Jego temperatura zostata oszaco-
wana na okoto 2,7 K. Mozna powiedziec za-
tem, ze kazdy z nas jest ,otulony” delikatnym
echem pierwotnego ciepta, ktore wypetnia
caty kosmos (Hawking, 2018; Uzan, 2021).

Z czasem, gdy powstawaty pierwsze
gwiazdy, grawitacja zaczeta ponownie $ci-
ska¢ materie i wytwarzac lokalne zrodta cie-
pta. Wnetrza mtodych gwiazd osiggaty dzie-
sigtki min K, co pozwalato na fuzje wodoru
w hel i generowanie ogromnych ilosci ener-
gii. W ten sposob ciepto stato sie nie tylko

19

skutkiem ekspansji, ale tez zrodtem przemian
materii. Z czasem, w kolejnych pokoleniach
gwiazd, zaczety powstawac ciezsze pier-
wiastki — tlen, wegiel, zelazo — z ktorych zbu-
dowana jest dzis Ziemia i cate zycie, jakie
znamy. W pdzniejszym etapie to ciepto dys-
kéw protoplanetarnych i wedrowka linii
sniegu, sprzezone z migracja mtodych pla-
net, decydowaty o tym, ktore Swiaty pozo-
staty skaliste, a ktore zatrzymaty wode.
(Bitsch i in., 2019).

Gdy z obtoku gazu i pytu formowat sie
Uktad  Stoneczny, rozktad temperatur
w dysku wyznaczat potozenie linii sniegu,
a wraz z nig los przysztych planet: te, ktére
rodzity sie i migrowaty wewnatrz linii $niegu,
pozostawaty zasadniczo skaliste, podczas
gdy planety powstajace poza nig mogty aku-
mulowac l6d/wode i przenosi¢ ja do wnetrza
uktadu w trakcie migragji (Bitsch i in., 2019).
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W tym obrazie Ziemia zaczyna jako pla-
neta ,sucha”, uformowana ok. 4,56 mld lat
temu we wnetrzu linii $niegu; dopiero pdz-
niej, w epizodzie intensywnych zderzen
4,37-4,20 mid lat temu (ang. ABEL Bom-
bardment), naptyw zewnetrznej materii wo-
donosnej i ogrzewanie uderzeniowe dopet-
nity sktad jej powierzchni i atmosfery (Ma-
ruyama i Ebisuzaki, 2017).

Dopiero z czasem Ziemia zaczeta odda-
wac ciepto w przestrzen kosmiczng. W miare
uptywu czasu, po epizodach intensywnego
bombardowania i ogrzewania uderzenio-
wego, powierzchnia ulegata stopniowemu
chtodzeniu i krzepnieciu. W ten sposéb po-
wstata cienka, stata skorupa, ktéra pdzniej
stata sie ,sceng” dla dalszych etapéw ewolu-
gji.

| tak oto pierwsze wielkie ,rozdanie tem-
peratury” potozyto fundament pod wszystko,
co nastgpito pdzniej — od tworzenia pier-
wiastkow po rozwdj klimatu, atmosfery i bio-
sfery. Ciepto przestato by¢ chaotycznym da-
rem eksplozji, a stato sie precyzyjnym narze-
dziem porzadku.

Rola ciepta w ewolucji atmosfery

Okoto 3,8 mld lat temu, gdy skorupa mtode;j
Ziemi stezata na tyle, by morza mogty prze-
trwac w stanie ciektym, nad ich powierzchnia
unosita sie duszna mieszanina dwutlenku
wegla i azotu, z domieszkami wodoru oraz —
epizodycznie po wiekszych uderzeniach —
metanu (Sinclairiin., 2020). Wolny tlen — gaz,
ktéry dzi$ decyduje o kazdym naszym wde-
chu — prawie nie istniat. Jego udziat wynosit
0,001% objetosci atmosfery, czyli tyle co te-
raz np. neonu czy kryptonu (Brown, 2012).
Jednak to witasnie tlen miat stac¢ sie ,moto-
rem” kolejnej rewolugji. Okoto 3,5 mld lat
temu w ptytkich, nastonecznionych lagunach
pojawity sie sinice. Te bardzo pierwotne jed-
nokomdrkowe formy biologiczne, oddzielity
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tlen z powszechnego wtedy w atmosferze
i wodzie dwutlenku wegla, i uwolnity go do
atmosfery. Z chemicznego punktu widzenia
fotosynteza zachodzaca z ich udziatem byta
prostym ,manewrem”: wodor trafiat do bu-
dulca komorki, a tlen uwalniat sie do otocze-
nia (Shestakov i Karbysheva, 2017).

O tym, jak gteboka to byta zmiana, mowi
geochemiczna rekonstrukcja tzw. Wielkiego
Zdarzenia Tlenowego (ang. Great Oxygena-
tion Event). Wzrost zawartosci tlenu w at-
mosferze i powierzchniowych wodach do-
prowadzito do powaznych zmian ekologicz-
nych i zaniku wielu nisz dla organizmow bez-
tlenowych (Ligrone, 2019; Lyons i in., 2014).
Gdy wody oceandow przesycity sie tlenem
(Ryc. 2), jego nadmiar zaczat trafia¢ do at-
mosfery, ktéra wowczas sktadata sie gtownie
z azotu i dwutlenku wegla (Ligrone, 2019).
Problemem stat sie w tamtym czasie metan,
wytwarzany przez metanogeny: w coraz bar-
dziej natlenionej atmosferze ulegat fotoche-
micznemu utlenianiu, co ostabiato efekt cie-
plarniany (Ligrone, 2019; Luo i in., 2016). Na
skutek silnego promieniowania stonecznego
dochodzacego do powierzchni Ziemi, metan
brat udziat w szeregu reakgcji fotochemicz-
nych z tlenem i pochodnymi, co skutkowato
ochtodzeniem klimatu (Luo i in,, 2016). Okoto
2,4 mld lat temu doprowadzito to do zmiany
klimatu na naszej planecie i tzw. zlodowace-
nia huronskiego, trwajgcego okoto 300 min
lat (Gumsley i in., 2017). Ze wzgledu na za-
warto$¢ metanu i zmiany w bilansie dwu-
tlenku wegla przy jednoczesnym wzroscie
ilosci tlenu w atmosferze zaczety wymierac
bakterie beztlenowe, jedyne wdwczas orga-
nizmy. Mimo, ze opisana powyzej katastrofa
tlenowa, ze wzgledu na swdj globalny zasieg,
uwazana jest za jedno z najwiekszych wymie-
ran gatunkow na naszej planecie, data moz-
liwosci rozwoju nowym organizmom zywym.
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Ryc. 2. Poréwnanie sktadu atmosfery dawnej i wspotczesnej Ziemi (Zzrédto: Encyclopedia Britannica)

Mowa o organizmach tlenowych, korzystaja-
cych z mozliwosci energetycznych zawartych
w materii organicznej. Na opisane powyzej
zjawisko, ktére zaczeto sie okoto 2,45 mi-
liarda lat temu, wskazuja krzywe wzrostu ci-
$nienia  parcjalnego tlenu czastkowego
(Ryc. 3). Wzrost ten nie byt jednorazowy
i wszedzie rownoczesny; dane i modele
wskazuja na oscylacje poziomu O, a nawet
powtarzajace sie epizody utleniania i nawro-
téw do stanow stabo utlenionych, ale mimo
to wystarczajgco wyrazny, by méwi¢ o nowej
epoce atmosferycznej (Ruiz i in., 2024). Po
tym, jak zelzato zlodowacenie huronskie, co
miato miejsce okoto 2,1 mld lat temu, poja-
wito sie na Ziemi wiecej kontynentow, at-
mosfera stata sie trwale bogatsza w tlen,
cho¢ wciaz na poziomie utamkow procenta—
okoto 0,2-2% PAL (ang. Present Atmospheric
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Level) w Srodkowym proterozoiku (Catling,
2014). Jednym ze skutkdw byto powolne
tworzenie sie ochronnej warstwy ozonu
w stratosferze. Ozon nie ,grzeje” bezposred-
nio powierzchni Ziemi, zmienia jednak miej-
sce, w ktorym pochtaniana jest energia pro-
mieniowania, przesuwajac czes¢ obcigzenia
cieplnego wyzej w atmosfere. W jezyku bi-
lansu energii: atmosfera zaczeta dziata¢ nie
tylko jak koc, ale i jak filtr, ktéry ustawia, ile
i jakiego promieniowania dociera do po-
wierzchni i wraca w kosmos (Lyons i in.,
2014).

Gdy stezenie tlenu przekroczyto kilka pro-
cent, a w goérnej atmosferze uformowata sie
warstwa ozonowa, ktéra chronita powierzch-
nie Ziemi przed niszczacym ultrafiolete
otworzyta sie droga dla wyjscia zycia z wody
na lad (Catling, 2014).
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Ryc. 3. Zmiany zawartosci tlenu w atmosferze Ziemi na przestrzeni ostatnich 600 milionéw lat
(zZrédto: Berner i in. 2007)

Zaptonat ogien — cztowiek zaczyna
swiadomie ksztattowac przeptyw
ciepta

Po uptywie wielu miliardoéw lat od wielkiego
wybuchu, gdy klimat stat sie bardziej przewi-
dywalny, ciepto przestato by¢ jedynie warun-
kiem srodowiskowym — cztowiek nauczyt sie
je ujarzmia¢. Ogien dawat stabilne Zrodto
energii do ogrzewania i oswietlenia, a jedno-
czesnie zwiekszat bezpieczenstwo obozo-
wisk po zmroku. Dowodza tego liczne znale-
ziska archeologiczne, takie jak paleniska
i slady kontrolowanego ognia z okresu plej-
stocenu (Gowlett, 2016; Stancampiano i in.,
2023). Kluczowy byt takze wptyw ognia na
ewolucje ludzkiej diety. Obrébka termiczna
zywnosci rozktadata jej twarda strukture,
zwiekszata przyswajalnos¢ sktadnikow od-
zywczych oraz skracata czas przygotowania
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i spozywania positkow, co podnosito bilans
energetyczny diety (Wrangham i Carmody,
2010). W dtuzszej perspektywie sprzyjato to
rozwojowi funkgji poznawczych oraz ztozo-
nych form wspodtpracy: podtrzymywanie
ognia wymagato planowania, podziatu rol
i kontroli zachowan — umiejetnosci, ktére za-
czety wyroznia¢ nasz gatunek (Twomey,
2013).

Wokét ognia stopniowo ksztattowat sie
porzadek codziennych czynnosci. Podtrzy-
mywanie ptomienia, gromadzenie drewna
i przygotowywanie positkow wymagaty ko-
ordynacji dziatan, co prowadzito do wyzna-
czania roél i ustalania zasad: kto doktada do
ognia, kto odpowiada za opat, a takze kiedy
i gdzie mozna go rozpali¢, by zapewni¢ bez-
pieczenstwo catej grupie. Analizy powstawa-
nia norm pokazuja, ze podtrzymywanie
ognia traktowano jako wspolny obowigzek,
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z jasnymi oczekiwaniami i sankcjami za ich
tamanie (Rozov, 2022). Taki ,porzadek
ognia” systematyzowat codzienne zycie:
czynnosci wymagajace wysokiej temperatury
skupiaty sie przy palenisku, podczas gdy inne
mogty toczy¢ sie réwnolegle w chtodniej-
szych czesciach obozowiska (Gowlett, 2016).

Drugim podstawowym srodkiem kontroli
wymiany ciepta stat sie ubior. Dane archeo-
logiczne (m.in. narzedzia do obrobki skor)
oraz analizy funkcjonalne odziezy wskazujg,
ze w plejstocenie odziez petnita co najmniej
dwie role (Gilligan, 2010). Pierwsza z nich po-
legata na izolacji organizmu, czyli ochronie
przed utrata ciepta, a takze na stabilizacji mi-
kroklimatu przy skorze. Zasada jest prosta:
materiat zatrzymuje warstwe powietrza przy
ciele i ogranicza straty przez konwekgje;
w warunkach zimnych warstwowanie dodat-
kowo zwieksza izolacje (Gilligan i in., 2024,
Sanders i in., 2021). Druga rola byta typowo
uzytkowa i wigzata sie z aktywnoscia, w tym
udziatem w polowaniach, czy zwyktych czyn-
nosciach wykonywanych o swicie i zmierz-
chu. Oprocz funkgji termicznej, odziez by-
wata tez narzedziem maskowania i kamu-
flazu w praktykach towieckich oraz innych
zadaniach spotecznych (Buckner, 2021).
W rejonach charakteryzujacych sie nizszymi
temperaturami ludzie wykorzystywali war-
stwowe okrycie, co redukowato gradient
temperatury miedzy ciatem a otoczeniem.
Juz przed pojawieniem sie koscianych igiet
do szycia z oczkiem szyto i dopasowywano
okrycia za pomoca szpikulcéw/szydet z ko-
sci; pdzniej, w pdznym plejstocenie, igty upo-
wszechnity precyzyjne szycie (w tym bielizny
— warstwy wewnetrznej), co poprawiato sku-
tecznos¢ izolagji (Gilligan, 2010; Gilligan i in.,
2024).W goracych rejonach swiata ludzie, tak
jak zresztg obecnie, juz u zarania dziejow wy-
korzystywali Izejsze i bardziej przewiewne
,materiaty”. Utatwiato to odparowywanie
potu i ograniczato przegrzewanie organizmu
(Sanders i in., 2021).
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Do dzi$ wykorzystywana jest ta reguta.
Odziez dziata jak przenosny regulator prze-
ptywu ciepta miedzy organizmem a otacza-
jacym powietrzem. Wraz z rozwojem szycia
warstwowego i ozdabiania ubran (np. doszy-
wane paciorki) ubior zyskat takze spoteczne
funkgje ,stroju”, nie tracac roli ,ruchomej izo-
lacji termicznej” (Gilligan i in., 2024).

Trzecim filarem byt wybor schronien i ma-
teriatu na ich przygotowanie — od natural-
nych wnek skalnych i prostych szataséw po
lekkie konstrukcje z gatezi, skor i tkanin.
Wczesne ziemianki wykorzystywaty izolacyj-
nos$¢ gruntu, ktérego nawet niewielka gru-
bos¢ ttumita dobowe wahania temperatury;
czesto byly to wnetrza czesciowo zagte-
bione, z utwardzonymi podtogami. Palenisko
czesto zorientowane byto centralnie, co za-
pewniato ogrzewanie w catym pomieszcze-
niu, dzieki zjawisku promieniowania i kon-
wekgji ciepta. To proste rozwigzanie stano-
wito funkcjonalny odpowiednik obecnego
systemu grzewczego. Oczywiscie byto takie,
na jakie pozwolity dwczesne zasoby ludzi.
W kulturach mobilnych porownywalng funk-
¢je petnity kopulaste namioty i okragte sza-
tasy z grubych, filcowych lub skorzanych
okry¢. Zimg pozwalato to na ograniczenie
straty ciepta, a latem — przy uchylonych
otworach u szczytu — umozliwiato skuteczna
wentylacje konwekcyjng wynikajaca z roznic
temperatur (Edwards, 2024; Kartal i in., 2025).

Wraz z rozwojem osiadtego trybu zycia
we wnetrzach pojawity sie bardziej ztozone
systemy dystrybucji ciepta. Przyktadem swia-
domego ksztattowania strumieni energii
moze by¢ hypocaustum (Ryc. 4). Byt to sys-
tem centralnego ogrzewania podtogowego.
Polegato ono na tym, ze ogrzane powietrze
kierowano kanatami pod posadzkami fazni
(a pozniej takze domow), a nastepnie prze-
wodami dymowymi — ceramicznymi tubami
(tubuli) — w $cianach, skad uchodzity na ze-
wnatrz; dzieki temu uzyskiwano réwno-
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mierny rozktad temperatur oraz tagodng cyr-
kulacje powietrza w pomieszczeniach. W Eu-
ropie Zachodniej po upadku Cesarstwa Za-
chodniorzymskiego  systemy  hypokau-
styczne w zasadzie zanikty i zastepowano je
paleniskiem otwartym; do poréwnywalnych

idei ogrzewania powierzchniowego powra-
cano wiele stuleci pdzniej. Hypocaust umoz-
liwit wiekszg dbatosc o higiene i poprawit wa-
runki zycia, szczegOlnie w infrastrukturze
tazni (Cowan, 1987). Mozna powiedzie¢, ze
w pewnym sensie byt prekursorem central-
nego ogrzewania (Bean i in., 2010).

)

\

Ryc. 4. Schemat dziatania hypocaustu rzymskiego
(Zrédto: opracowanie wtasne na podstawie rysunku Valentina Caracuta)

Tego typu praktyki s dowodem na ewo-
lucje od doraznego uzycia ognia w prymi-
tywnych schronieniach do zaprojektowa-
nych, przewidywalnych zrodet ciepta w miej-
scach zamieszkania (Bean i in., 2010).

Ciepto od zawsze ksztattowato réwniez
rozktad aktywnosci ludzi w ciggu dnia. W re-
jonach, w ktérych klimat charakteryzowaty
sie duza dobowg amplituda temperatury,
Czynnosci wymagajace wysitku przenoszono
na poranek i wieczor. Czesto w okresie naj-
wiekszego obcigzenia cieplnego robiono
przerwe. W wielu krajach, np. w rejonie $rod-
ziemnomorskim, gdzie temperatury w ciggu
dnia sg wysokie i nie sprzyjaja aktywnosciom,
taka tendencja zostata zachowana do dzis.
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Traktowane jest to jako koniecznos¢ ograni-
czania stresu cieplnego i spadku wydajnosci
organizmu w zwigzku z poddaniem go zbyt
wysokiej temperaturze otoczenia. Rdznice
klimatyczne czy sezonowe wahania tempe-
ratury zawsze wptywaty takze na organizacje
pracy. Mogty determinowac na przyktad do-
bér lokalizacji na prowadzenie aktywnosci
rzemiesiniczej. W ten sposob w dtugiej per-
spektywie czasu utrwalaty sie pewne wzorce
rozwoju gospodarczego w danej strefie kli-
matycznej (Clark, 1997).
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Od termometru do termostatu — jak
zaczeliSmy mierzy¢ i porzagdkowac
ciepto

Przez tysigclecia cztowiek czut ciepto, ale go
nie mierzyt. Prawdziwa zmiana przyszta, gdy
,goraco” i ,zimno" zamieniono w liczby. Od
tej chwili mozna byto poréwnywa¢, standa-
ryzowac i sterowac. W jezyku fizyki to proste
rozréznienie: temperatura opisuje stan
uktadu (to, co odczytujemy z przyrzadu),
a ciepto to energia w przeptywie miedzy
uktadami wskutek roznicy temperatur. Gdy
te roznice umiemy policzy¢, mozemy projek-
towac urzadzenia, ktore utrzymuja konkretny
profil temperatury w czasie i przestrzeni (Ma-
chin, 2024).

Pierwsze préby zwigzane ze stworzeniem
takich urzadzen byly proste i bazowaty na
wykorzystaniu aktualnych warunkdéw pogo-
dowych (Machin, 2024). Termoskop Galileu-
sza (koniec XVI w.) pokazywat tylko, ze po-
wietrze rozszerza sie, gdy jest cieplej. Byt to
szklany przyrzad z banka i kapilara, bez skali
i wrazliwy na zmiany cisnienia atmosferycz-
nego. Przetomem byto dodanie podziafki,
czego dokonat Santorio Santorio na po-
czatku XVII w. (m.in. ,ptomien Swiecy” jako
punkt ciepta i ,$nieg” jako punkt zimna).
Dzieki temu zamienit ciekawostke w przyrzad
pomiarowy. Kolejnym krokiem w historii ter-
mometru bylo zamkniecie stupa cieczy
w szkle i wybor medium, ktore zachowuje sie
przewidywalnie w pomiarze temperatury. Od
potowy XVII w. pojawity sie ,florenckie” ter-
mometry cieczowe (uszczelnione, alkoho-
lowe), mniej podatne na pogode i cisnienie.
W 1714 r. Daniel Gabriel Fahrenheit (1686—
1736), holenderski fizyk i inzynier, wykorzy-
stat w tym celu rtec i przeprowadzit jej stan-
daryzagje. Jego skala opierata sie na trzech
punktach odniesienia: 0° (mieszanina lodu,
wody i soli), 32° (I6d z woda) oraz 96° (tem-
peratura ciata); wartos¢ 212° dla wrzenia
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wody dodat w pozniejszej publikadji i pier-
wotnie nie stuzyta ona jako staty punkt skali
(Wright i Mackowiak, 2016). W 1742 r. Anders
Celsius (1701-1744), szwedzki fizyk i astro-
nom, uporzadkowat skale. Jako warunki
brzegowe przyjat topnienie sniegu i wrzenie
wody; pierwotnie skala byta odwrdcona,
a wkrotce przyjeto jej dzisiejszg postac;
w 1948 r. usankcjonowano nazwe ,stopien
Celsjusza (°C)". Uczynito to pomiar intuicyj-
nym i porownywalnym miedzy laboratoriami.
Z kolei brytyjski naukowiec (fizyk, matematyk
i przyrodnik) William Thomson, inaczej lord
Kelvin (1824-1907), domknat catg logike po-
miaru temperatury, proponujac w 1848 r.
skale bezwzgledna. Byta ona oparta na pra-
wach gazow i idei zera absolutnego; pdzniej
fizyka statystyczna powiagzata temperature ze
srednig energig kinetyczng czastek. To tu
,Sstopien” stat sie jednostka miary, a nie tylko
pozycja na skali (McCaskey, 2020). Kelvin
dzieki badaniom nad termodynamika wyna-
lazt skale, w ktorej temperatura informuje
nas, jaka jest energia kinetyczna czastek
w danym materiale. Od tej chwili ,stopien”
przestat by¢ lokalng umowa, a stat sie czescia
wspolnego jezyka nauki i techniki. Dzi$ te 0$
domyka definicja kelwina przez statg Bolt-
zmanna i praktyka skal zdefiniowanych, bar-
dzo bliskich temperaturze termodynamicz-
nej (Chang, 2004; Machin, 2024).

Na pozniejszym etapie rozwoju pomiaru
temperatury, a doktadniej w XX wieku, za-
czeto wykorzystywa¢ metale i pdtprzewod-
niki. Platynowy czujnik rezystancyjny (PRT)
wykorzystuje fakt, ze opdr elektryczny pla-
tyny rosnie w przewidywalny sposob wraz
z temperatura. Dzieki temu mozna osiggac
wysoka doktadnos¢ i powtarzalnos$¢ odczytu
wyniku na potrzeby przemystu, laboratoriow
kalibracyjnych, czy medycyny. W zastosowa-
niach przenosnych rozwinety sie termistory
i czujniki potprzewodnikowe. Sa one mate,
szybkie w obstudze i tatwo integrujg sie
z elektronika. Sg to dzisiejsze ,termometry”
w inkubatorach, lodéwkach laboratoryjnych,
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czy w termometrach (Machin, 2024). Na tej
bazie powstaty termostaty i uktady regulagji
temperatury. Sg to urzadzenia, ktore utrzy-
mujg zadany punkt pracy (wymaganej tem-
peratury), a nie tylko ,zwiekszaja ciepto”. Uta-
twia to programowanie temperatury w po-
mieszczeniach szpitalnych, w reaktorach
chemicznych, czy po prostu w budynkach
mieszkalnych (Machin, 2024).

Réwnolegle z rozwojem odczytu tempe-
ratury, zmieniato sie¢ rozumienie cieptoty
ciata, czyli potocznie mowigc ,goraczki” (Pe-
arce, 2002). W starozytnej tradycji hipokra-
tejskiej ciepto ciata wigzano z rownowaga
,humordéw”. Rzymski lekarz greckiego po-
chodzenia, jeden z najznakomitszych staro-
zytnych lekarzy, Galen (129-216 n.e.), opisy-
wat goragczke jako stan chorobowy sam w so-
bie. Byt on diagnozowany obserwadjg i doty-
kiem (Yeo, 2005). Dopiero w ,epoce termo-
metru” mozliwe stato sie liczbowe okreslanie
stanu pacjenta i poréwnywanie przebiegu
chordb (Pearce, 2002). Wspdtczesnie uwaza
sie, ze ,jedna liczba" nie wystarczy. Tempe-
ratura ciata moze zaleze¢ od miejsca po-
miaru, pory dnia i stanu fizjologicznego czto-
wieka. Dlatego praktyka kliniczna ktadzie na-
cisk na protokdt powtarzalnosci pomiaru
(state migjsce i sposob), bo to ogranicza nie-
pewnos¢ (Angelini i in., 2020). Dodatkowo
wynik powinien byc¢ interpretowany z wzie-
ciem pod uwage catego kontekstu choroby.
To zmniejsza ryzyko popetnienia btedu oraz
pozwala lepiej rozpoznac¢ wzorzec goraczki
(Radhi & Patel, 2017). Taki sposob interpre-
towania temperatury poprzez jej pomiar, za-
stosowanie protokotu, interpretacje
z uwzglednieniem kontekstu, wydaje sie
wspolny dla medycyny i inzynierii ciepta.

Historia pomiaru temperatury /ciepta,
miata tez w dziejach ludzkosci rozdziat nega-
tywny w skutkach. Rte¢ byta idealnym me-
dium metrologicznym. Charakteryzuje sie
bowiem matym meniskiem, szerokim zakre-
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sem pracy i dobrg powtarzalnoscig uzyska-
nego wyniku temperatury (Angelini i in.,
2020). Okazata sie jednak toksyczna dla ludzi
i Srodowiska. Przyktadem moze by¢ konse-
kwencja dziatalnosci fabryki termometrow
w Kodaikanal, prowadzonej przez indyjska
spotke nalezacg do Unilever. W roku 2001
zostata zamknieta ona w zwigzku z zanie-
czyszczeniem $Srodowiska odpadami rteci.
Spotke przytapano na pozbywaniu sie tok-
sycznych odpaddw w gesto zaludnionej cze-
sci miasta (Karunasagar i in., 2006). Badania
gleby wykazaty stezenia siegajagce >50 mg
Hg/kg w bezposrednim sasiedztwie zaktadu
[1]. Wywotato to, nie tylko problemy zdro-
wotne wsréd pracownikéw, ale i dtugotrwate
zanieczyszczenie srodowiska poprzez prze-
dostanie sie rteci do tancucha pokarmo-
wego. Ten przypadek — opisywany szeroko
w prasie medycznej — przyspieszyt odcho-
dzenie od termostupkow rteciowych w me-
dycynie i edukacji na rzecz alkoholu, gali-
stanu i elektroniki. Dyrektywag Unii Europej-
skiej (76/769/EWG) termometry rteciowe zo-
staty wycofane z obiegu w 2009 roku. W Pol-
sce postanowienia tej dyrektywy zostaty
wdrozone przez przepisy Rozporzadzenia
Ministra Gospodarki w 2008 r. (Dz. U. nr 190,
poz. 1163 z 2008 r.). Od tego czasu nie mozna
ich kupi¢ w aptekach czy sklepach medycz-
nych [2].

Od pary i piecéw do skutkow
ubocznych spalania — ciepto w erze
przemystu

Kiedy nauczylismy sie juz nie tylko czu¢, lecz
takze mierzy¢ temperature i utrzymywac ja
w zadanych granicach, ciepto zagoscito
w centrum gospodarki (Chang, 2004). Rewo-
lucja przemystowa, zapoczatkowana w XVIII
wieku w Anglii i Szkogji, objeta proces zmian
technologicznych, gospodarczych, spotecz-
nych i kulturalnych. Mozna powiedzie¢, ze
proces ten polegat na systematycznym za-
mienianiu energii cieplnej spalanych paliw
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kopalnych na prace mechaniczna i sterowa-
nie tym procesem w czasie. Maszyna parowa
byta inzynieryjnym ujeciem |l zasady termo-
dynamiki. Wykorzystywata roznice tempera-
tur (goracy kociot — chtodna skraplarka), by
wymusi¢ przeptyw energii, a nastepnie za-
mieni¢ go w ruch. To, co wczesniej realizo-
wano ,analogowo”, rekg rzemieslnika przy
piecu, przeniesiono na ciggte uktady o sta-
tym zasilaniu cieptem. Dotyczyto to kopalni,
przedzalni, kolei itp. (Brown, 2012). Réwnole-
gle udoskonalano precyzyjny pomiar tempe-
ratury, poprzez np. kontrole temperatury ko-
tta, warunkdw suszenia, warzenia i obrébki
materiatow. Oczywiscie wymagato to wiary-
godnych przyrzadow i punktdw odniesienia.
Dostarczyty ich wspomniane wczesniej skale
Fahrenheita, Celsjusza i Kelvina. Przemyst
XX wieku rozwinat sie o czujniki rezystan-
cyjne i potprzewodnikowe. Te pozwolity na
przejscie od ,grzania” do regulacji tempera-
tury (Machin, 2024).

Zmieniato sie rowniez podejscie do pozy-
skiwania ciepta w domu. Przez stulecia cen-
tralnym miejscem dla ciepta byta otwarta
kuchnia palenisko. P&zniej jej role przejety
konstrukgje, ktore zatrzymuja strumien ener-
gii na duzej. Byty to masywne piece, w tym
piece kaflowe. Inne rozwigzania polegaty na
prowadzeniu ciepta kanatami wokot prze-
strzeni mieszkalnej. W tym sensie tradycyjny
piec byt nie tylko ,zrédtem ognia”, lecz ma-
gazynem ciepta o duzej pojemnosci cieplnej.
Umozliwiato to wyrownanie temperatury
w skali doby. Jednoczesnie ograniczyto ko-
nieczno$¢ ciaggtego doktadania opatu celem
utrzymania statej temperatury. Wykorzysta-
nie ciepta w tazniach publicznych przyczynito
sie do poprawy higieny, a w konsekwencji
i zdrowia. Ciepto zaczeto wiec taczyc
z rozwojem architektury, ale tez codziennymi
przyzwyczajeniami, a nawet rytuatami. A stad
juz tylko krok do roli ciepta w ksztattowaniu
funkgji spotecznych (Crain, 2015).
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Niestety rozwdj przemystu to takze nega-
tywne skutki uboczne dla srodowiska natu-
ralnego. Analiza rdzeni koralowych i lgdo-
wych dowodzi, ze wraz z nastaniem epoki
przemystowej rozpoczeto sie intensywne,
globalne ocieplenie klimatu. Jest one bezpo-
srednig konsekwencjg antropopresji, zwigza-
nej z ponadnormatywnym spalaniem paliw
kopalnych. Od poczatku rewolucji przemy-
stowej w 1850 roku srednia temperatura po-
wierzchni Ziemi wzrosta o okoto 1,1°C (Vi-
cedo—Cabrera i in., 2021). Moze sie to wyda-
wac niewiele, jednak bilans cieplny Ziemi
ulegt juz trwatemu przesunieciu. Wiece)
energii zatrzymuje sie przy jej powierzchni,
rosnie czestos¢ i intensywnos¢ epizodow wy-
sokiej temperatury powietrza, a wraz z nimi
wzrastajg koszty spoteczne i ekonomiczne
(Rennert i in., 2022). Globalne ocieplenie kli-
matu skutkuje topnieniem lodowcéw, wyste-
powaniem ekstremalnych susz, ulewnych
opadow, potrzebg wprowadzania zmian
w rolnictwie, negatywnymi skutkami dla
zdrowia ludzi na Ziemi. Badania potwier-
dzaja, ze fale upatdw majg wyraznie nega-
tywny wptyw na rynek pracy. Analiza danych
z Australii (2001-2019) wykazata, ze dni
z temperaturg powyzej 38°C powodujg $red-
nio 5% nieobecnosci w pracy i skrocenie ty-
godniowego czasu pracy o ok. 46 minut, co
nie jest kompensowane w kolejnych dniach
(Ireland i in., 2024). Podobne wyniki uzy-
skano w Stanach Zjednoczonych — w sekto-
rach szczegdlnie narazonych na wysokie te-
meperatury (rolnictwo, budownictwo, prze-
myst) kazdy stopien powyzej 32°C skutkowat
redukcjg czasu pracy o ok. 2,6 minuty dzien-
nie. Prognozuje sie, ze do 2090 r. straty
z tego tytutu moga siega¢ nawet 80 mid USD
rocznie (Neidell i in.,, 2021). Sygnaty widac¢
takze po stronie biosfery. W okresach dtugo-
trwatych fal upatéw dochodzi do degradacji
lub cofania sie najbardziej produktywnych
ekosystemow lagdowych i morskich — laséw
tropikalnych, raf koralowych, tgk traw mor-
skich czy lasow wodorostow. Zjawisko to
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prowadzi do spadku plonéw oraz ostabienia
stabilnosci ekosystemow, rozumianej jako
zdolno$¢ do utrzymania kluczowych funkgji
i procesow biologicznych mimo zaktocen
srodowiskowych. Ekstremalne temperatury
obnizajg odpornosc tych systemdw, ponie-
waz juz krotkotrwate anomalie cieplne moga
wywotaé masowe wymieranie organizmow,
a jednoczesnie ograniczajg ich sprezystosc,
czyli zdolnos¢ do regeneracji. W konsekwen-
¢ji dochodzi do utraty gatunkéw fundamen-
towych, uproszczenia struktury siedlisk,
spadku bioroznorodnosci i zaburzeh w cy-
klach biogeochemicznych (Ruthrofiin., 2018;
Smale i in., 2019).

Historia ,ciepta przemystowego” ma dwie
twarze. Pierwsza — to niebywaty wzrost mocy
wytworczych, rozwdj transportu i standardu
zycia, ktory byt mozliwy dzieki opanowaniu
konwersji energii cieplnej na prace oraz opa-
nowaniu umiejetnosci regulacji temperatury.
Druga, ta mniej przyjazna — ujawnita, ze cie-
pto w skali planetarnej nie znosi ,nadwyzek”
bez konsekwencji. Wigze sie ona z toksycz-
nymi $ladami materiatéw, jak rowniez ze
zmiana klimatu, przektada sie negatywnie na
zdrowie, gospodarke i caty ekosystem.

Podsumowanie

Kazdy moment naszej historii — od kosmicz-
nego zaru w pierwszych sekundach powsta-
nia Wszechswiata, przez narodziny Ziemi, po
wspotczesnos¢ — uktada sie w opowiesc
o nieustannym przeptywie energii. Ten ruch
energii znamy jako ciepto, a jego slady od-
najdujemy wszedzie: w chtodzie poranka
i w wieczornym cieple domowego ogniska,
w precyzji termometrow i w cieniu roslin,
w naszych miastach i ciatach.

Ale ta opowie$¢ mowi cos jeszcze— ludzie
maja swoj udziat w ,obiegu ciepta” w przyro-
dzie. To my decydujemy, jaka energie zatrzy-
mujemy, a jakg uwalniamy, ile ogrzewamy, ile
chtodzimy i jakim kosztem to robimy. Kazdy
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drobny wybor — od materiatéw, ktorych uzy-
wamy do pomiaru temperatury, po sposéb
organizacji dnia — wptywa na ostateczny ra-
chunek energetyczny, zdrowie, gospodarke
i otoczenie.

Ta historia nie konczy sie jedng prosta re-
cepta. Zostawia raczej swiadomos¢, ze ciepto
jest czym$ wiecej niz tylko fizycznym zjawi-
skiem. Jest wyzwaniem spotecznym, ekono-
micznym i ekologicznym. | cho¢ prawa fizyki
pozostajg niezmienne, to wtasnie nasze de-
Cyzje sprawiaja, ze energia ta przynosi kom-
fort i rozwdj lub powoduje straty i problemy.

Warto wiec zatrzymac sie na chwile, spoj-
rzeC na wtasny dzien i zapytac: czy energia,
ktorag dzis wykorzystuje, naprawde stuzy mo-
jemu zyciu, czy moze tylko przez nie prze-
ptywa? W tym pytaniu nie chodzi o wine czy
obowiazek, ale o swiadomy wybor kierunku,
w jakim pozwolimy przeptywac energii. Bo
ciepto pozostanie zawsze jej ruchem. Lecz to
my — dzien po dniu — decydujemy, jaki $lad
po sobie zostawimy w zwigzku z wykorzysta-
niem ciepta.
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