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Węgiel jako pierwiastek odgrywa kluczową 

rolę w funkcjonowaniu naszej planety. 

Prześledzimy drogę jak jego atomy 

powstawały miliardy lat temu, brały udział 

w powstaniu Ziemi oraz stanowiły podstawę 

życia na naszej planecie. Naturalny obieg 

węgla w przyrodzie kształtował się przez mi-

liony lat, regulując klimat i ekosystemy. 

Wszystko zmieniło się wraz z nadejściem 

epoki industrialnej. Spalanie paliw kopalnych 

i inne przeobrażenia będące udziałem 

cywilizacji całkowicie zmieniły cykl węgla 

w przyrodzie i wywarły wpływ na każdy ele-

ment funkcjonowania planety. Kilka kart 

z historii węgla pozwala prześledzić 

przeszłość Ziemi i zerknąć w scenariusze 

zmian. 

Ciepło – pojęcie pełne znaczeń 

Myśląc o cieple, w głowie pojawiają się róż-

norodne obrazy – ciepło rodzinnego domu, 

promienie słońca w letni dzień, żar ogniska. 

Współcześnie „ciepło” to już nie tylko indy-

widualne doświadczenie – to również temat 

globalnej rozmowy. Wiele się słyszy o zmia-

nach klimatu, roli gazów cieplarnianych oraz 

paliwach kopalnych. Za wymienionymi tema-

tami kryje się niepozorna cząsteczka węgla. 

Pierwiastek chemiczny o symbolu C i liczbie 

atomowej 6 ma niebywałe znaczenie dla lo-

sów naszej planety i nas samych. Może być 

jednocześnie najtwardszym znanym mate-

riałem – diamentem, jak i miękkim wypełnie-

niem ołówków – grafitem. Oprócz tych naj-

bardziej znanych występuje w wielu innych 

odmianach alotropowych, takich jak grafen, 

fulereny, nanorurki czy karbin, przybierając 

przy każdej z nich inne fascynujące właści-

wości. A co najistotniejsze z naszej perspek-

tywy stanowi podstawowy budulec życia na 

Ziemi (Lide, 2007). 

Narodziny węgla 

W pierwszych minutach istnienia Wszech-

świata powstały przede wszystkim lekkie 

pierwiastki tj. H, He, Li, Be. Natomiast węgiel 

powstał w masywnych gwiazdach drugiej 

generacji w procesie zwanym „Potrójnym 

procesem α”, gdzie z trzech jąder helu 4He 

powstaje jedno jądro węgla 12C. Gdy takie 

gwiazdy umierały gwałtowną, spektakularną 
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eksplozją wyprodukowany w nich węgiel był 

wyrzucany w przestrzeń kosmiczną. Czą-

steczki pochodzące z takich eksplozji stwo-

rzyły obłoki gazów i pyłu będące zaczątkiem 

mgławic pyłowych, z których zrodziły się 

nowe gwiazdy. Około 4,6 miliarda lat temu 

z takiej mgławicy powstał Układ Słoneczny 

(Lodders, 2003). W trakcie formowania pla-

net materia z mgławicy zaczęła się skupiać 

w zarodki planet. Węgiel uległ uwięzieniu 

w jądrze i płaszczu Ziemi w postaci rozpusz-

czonych związków C, a także w skałach 

płaszcza i skorupy ziemskiej. Część węgla zo-

stała wydobyta na powierzchnię przez wul-

kanizm, głównie jako dwutlenek węgla, który 

trafił do pierwotnej atmosfery Ziemi 

(Dasgupta, 2013). Niektóre związki węgla, 

szczególnie złożone cząsteczki organiczne 

(np. aminokwasy), mogły zostać dostarczone 

na młodą Ziemię przez meteoryty i komety 

(Martins, 2008). 

Fundament życia: węgiel 

Historia węgla na Ziemi otworzyła nowy 

rozdział wraz z rozwojem życia. Najstarsza 

znana ziemska materia pochodzenia bioge-

nicznego to grafit w przeobrażonych skałach 

osadowych z zachodniej Grenlandii, która 

datowana jest na 3,7 miliarda lat (Ohtomo 

i in., 2014). Węgiel tworzy cztery silne wiąza-

nia kowalencyjne, co pozwala mu łączyć się 

z innymi atomami (H, O, N, S, P) w złożone, 

stabilne struktury. Dzięki temu może tworzyć 

łańcuchy, pierścienie, rozgałęzienia, będące 

podstawami aminokwasów, cukrów, lipidów 

oraz kwasów nukleinowych (DNA, RNA) (Al-

berts , 2014). Węgiel jest dosłownie wdruko-

wany w nasze DNA. Żaden inny pierwiastek 

nie dorównuje węglowi różnorodnością i ela-

stycznością wiązań przy zachowaniu stabil-

ności cząsteczek (Smith, Morowitz, 2016). 

W eksperymentach (np. Miller-Urey, 1953) 

 
1 detrytusożercy to organizmy odżywiające się 
nierozłożoną, martwą materią organiczną tzw. 
detrytusem 

pokazano, że z mieszaniny prostych gazów 

zawierających węgiel (CH₄, CO₂) mogą 

powstawać aminokwasy i inne związki życia 

(Miller, 1953). Węgiel umożliwił powstanie 

tzw. pierwszych układów samopowielających 

się (hipoteza RNA) (Orgel, 2004). 

Węgiel stanowił zatem zaczyn życia na 

naszej planecie i stanowi po dziś dzień jej 

szkielet, co najwyraźniej widać analizując 

jego cykl w przyrodzie. Cykl biogechemiczny 

węgla opisuje obieg atomów węgla pomię-

dzy atmosferą, hydrosferą, biosferą i lito-

sferą. Zacznijmy od fotosyntezy. Rośliny, 

glony i cyjanobakterie pobierają dwutlenek 

węgla z atmosfery i wykorzystując energię 

słoneczną przekształcają go w związki orga-

niczne np. glukozę (wzór sumaryczny glu-

kozy to C₆H₁₂O₆). Węgiel trafia więc do bio-

masy. Następnie kolejne organizmy np. 

zwierzęta rozkładają materię organiczną 

w procesie oddychania komórkowego, któ-

rego produktami są m.in. energia i dwutle-

nek węgla. Cześć węgla wraca więc do at-

mosfery, natomiast część jest wbudowywana 

w ciała kolejnych organizmów łańcucha po-

karmowego. Węgiel może zostać przekształ-

cony w ciało danego organizmu (np. konsu-

menta), lub zostać martwą materią orga-

niczną i w końcu trafić do wody, gleby lub 

atmosfery. Następnie martwa materia orga-

niczna może być wykorzystana przez detry-

tusożerców1 lub w inny sposób ulec rozkła-

dowi do substancji nieorganicznych. Ilość 

rozłożonej martwej materii organicznej za-

leży od ekosystemu (Alberts, 2014). W więk-

szości gleb uwalnianie węgla do atmosfery 

równoważy jego coroczne odkładanie. Wy-

jątkiem są torfowiska, na których ze względu 

na wysoki poziom wód gruntowych nie ma 

dostępu powietrza do głębszych warstw 

gleby. W takich warunkach część obumarłej 
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materii się nie rozkłada, tylko akumuluje po-

wodując odkładanie pokładów torfu (Dunne, 

2021). 

Martwa materia i geologiczna 
historia węgla 

Proces detrytusu obumarłych roślin, zwie-

rząt, mikroorganizmów zmieniał się znacznie 

w różnych epokach geologicznych Ziemi. Za-

chodził różnorodnie w zależności od składu 

atmosfery, obecności lub braku organizmów 

rozkładających czy warunków klimatycznych. 

Archaik i wczesny proterozoik (4,0–2,0 mld 

lat temu) to okres atmosfery beztlenowej 

i dominacja fermentacji beztlenowej, co 

sprawiało, że materia organiczna rozkładała 

się powoli i częściowo ulegała sedymentacji 

w osadach, tworząc prekursory ropy i łupków 

bitumicznych (Canfield, 2005). 

Kolejnym ciekawym pod tym względem 

okresem w dziejach Ziemi był karbon trwa-

jący ok. 359–299 mln lat temu. Planetę po-

krywała bujna roślinność. Dominowały wi-

dłaki, skrzypy i paprocie, często o pokrojach 

drzewiastych. Kluczowym budulcem tych ro-

ślin była lignina, która umożliwiła roślinom 

„podbicie” lądu i osiągnięcie dużych rozmia-

rów. Lignina wbudowana w ściany komór-

kowe nadaje twardość oraz odporność na 

zginanie. Umożliwiło to ewolucję drzew i zło-

żonych lasów oraz odegrało kluczową rolę 

w ewolucji ekosystemów lądowych. Rośliny 

„wynalazły” ligninę… tymczasem „dział” od-

powiedzialny za „rozkładanie materii orga-

nicznej” niejako „zaspał”. W okresie karbonu 

bakterie i grzyby nie potrafiły jeszcze efek-

tywnie rozkładać ligniny. Brakowało enzy-

mów takich jak ligninazy i peroksydazy man-

ganowe, które pojawiły się znacznie później. 

Tak, więc, martwa biomasa bogata w ligninę 

nie ulegała rozkładowi, gromadziła się w ba-

gniskach i tworzyła pokłady węgla kamien-

nego(Floudas, 2012). Dopiero w późnym kar-

bonie do permu (około 290 mln lat temu) 

pojawiły się grzyby białozgnilne, które poło-

żyły kres tak masowej ilość powstających tor-

fowisk i pokładów węgla (Eastwood , 2011) 

(Gadd, 2007). 

Węgiel w ruchu: oceany, wulkany 
i skały 

Cykl węgla to nie tylko organizmy żywe. To 

także wulkanizm, wietrzenie skał, subdukcja 

i metamorfiz (węgiel z osadów może być po-

nownie uwalniany do atmosfery podczas 

przemian skał). Ważnym elementem są także 

oceany. Pochłaniają dwutlenek węgla z at-

mosfery. Prądy morskie natomiast transpor-

tują węgiel między warstwami wody, np. 

Z powierzchni do głębin. W atmosferze za-

chodzą reakcje fotochemiczne z udziałem 

promieniowania słonecznego, a gleba sta-

nowi ogromny magazyn węgla (Schlesinger 

i Bernhardt, 2013). 

Niedawno (biorąc za skalę długość życia 

naszej planety) na scenę cyklu dwutlenku 

węgla wdarł się jeszcze jeden aktor – czło-

wiek, zakłócając cykl węgla w przyrodzie. 

Ludzkość stworzyła własny „podcykl” węgla 

opierający się na spalaniu paliw kopalnych. 

Nastąpiło „uaktywnianie” tej części węgla, 

która pozostawała poza cyklem (zgroma-

dzona pod powierzchnią Ziemi). Druga skła-

dowa naszego „podcyklu” to blokowanie 

przyrody w wychwytywaniu dwutlenku wę-

gla, polegające na przykład na wylesianiu 

i degradacji lasów, zmianie użytkowania 

ziemi, urbanizacji oraz trwałe pokrywanie 

gruntu materiałami nieprzepuszczalnymi, jak 

beton czy asfalt [1]. To nowy trybik dodany 

do węglowego zegara. Nowy element zmie-

nia jednak tryby całego mechanizmu, a przez 

to wpływa na każdy element planety. Warto 

więc przyjrzeć się temu, co zaburzenie cyklu 

węgla oznacza dla  niektórych z nich... 
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… dla Ziemi jako planety 

Nowy „trybik” w cyklu węgla istotnie wpływa 

na funkcjonowanie całej planety jako sys-

temu powiązanych ze sobą zjawisk. Najsze-

rzej omawianym zjawiskiem są zmiany kli-

matu. Więcej węgla w atmosferze (w formie 

CO₂) oznacza ocieplenie, topnienie lodow-

ców, mniej białych powierzchni odbijających 

światło słoneczne, a więcej skał lub innych 

powierzchni nagrzewających się pod jego 

wpływem, a co za tym idzie jeszcze większe 

ocieplenie planety. To przykład dodatniego 

sprzężenia zwrotnego. Jak w efekcie domino 

– nowy trybik w cyklu węgla pchnął jedną 

kostkę, a ona kolejne. Istnieją także ujemne 

sprzężenia zwrotne, powodujące obniżenie 

temperatury. Pozostając przy metaforze do-

mino, warto podkreślić, że nie wiemy, w jaki 

wzór układają się kostki, co więcej, nie 

wiemy, jak będą na siebie wpływać. Wiemy 

jednak, że sprzężenia są nieliniowe – mała 

zmiana może prowadzić do dużej reakcji sys-

temu. Wiele ze sprzężeń zwrotnych jest 

słabo poznanych lub trudnych do modelo-

wania, a w najgorszym scenariuszu mogą 

prowadzić do tzw. punktów krytycznych. Są 

to granice, po przekroczeniu których anali-

zowany element np. system klimatyczny za-

czyna się gwałtownie i często nieodwracalnie 

zmieniać [1] (Steffen i in., 2018). To jak prze-

wrócenie domina: wystarczy lekki impuls, 

a cały łańcuch rusza sam i nie da się go już 

zatrzymać. Dla planety jako systemu nowy 

trybik w mechanizmie oznacza więc po-

pchniecie w stronę, której nie jesteśmy w sta-

nie przewidzieć. 

… dla życia na Ziemi 

Zaburzenie równowagi systemu planety 

oznacza konsekwencje dla biosfery. Życie na 

naszej planecie mogło powstać i się rozwijać 

właśnie dzięki przyjaznemu i stabilnemu kli-

matowi. Obecne tempo jego zmian, zakwa-

szenia oceanów, utraty siedlisk i wzrost stę-

żenia zanieczyszczeń prowadzi do maso-

wego wymierania. Warto podkreślić, że jest 

to szósta taka okoliczność w historii Ziemi. 

Pięć poprzednich razy biosfera zdołała wyjść 

z bezpośredniego zagrożenia zagładą, więc 

prawdopodobnie i tym razem przetrwa. Za 

każdym poprzednim razem większość ga-

tunków wymierała i życie odradzało się w in-

nej odsłonie. Wielkie wymierania szczególnie 

dotkliwie dotykają organizmy z wyższego 

rzędu troficznego. Dzieje się tak dlatego, że 

drapieżniki wyższego rzędu są silnie zależne 

od stabilności całego ekosystemu i potrze-

bują dużych ilości energii oraz rozbudowanej 

sieci pokarmowej, która łatwo się załamuje 

przy zaburzeniach u podstaw (Barnosky, 

2011). Przy obecnym wielkim wymieraniu na 

samym szczycie łańcucha pokarmowego jest 

człowiek, więc scenariusz może nie być dla 

nas zbyt łaskawy a dla życia jako fenomenu… 

Gdy życie masowo ginie, zaczyna się pro-

ces reorganizacji biosfery. Pojawiają się nowe 

formy życia – często bardziej odporne, ina-

czej wyspecjalizowane, lepiej przystosowane 

do nowych warunków, a także… nowe czuby 

łańcuchów pokarmowych. Po każdym wiel-

kim wymieraniu biosfera „odzyskuje równo-

wagę”, ale na nowo – z nowymi gatunkami, 

ekosystemami, klimatem (Ceballos i in., 

2015). Tak więc życie na Ziemi już przeżywało 

masowe katastrofy, i pewnie przetrwa także 

obecny kryzys, ale może już bez nas na 

pokładzie. Tak, wiec nowy trybik w cyklu wę-

gla dla życia na Ziemi oznacza zmiany, być 

może katastrofalne, gdzie człowiek i ważne 

dla niego gatunki już niekoniecznie odegrają 

główne role. 

… dla cywilizacji i gatunku człowieka 

Teraz oderwijmy się na chwilę od biologii 

i ekosystemu. Wyobraźmy sobie, że nie pod-

legamy takim samym prawom jak inne istoty. 

Bo to właśnie umożliwił nam ów „podcykl” 

węgla. Znaleźliśmy się w śnie poza prawami 
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natury. Spalanie materii życia z dawnych 

epok – węgla, ropy, gazu – pozwoliło czło-

wiekowi wymknąć się poza krepujące ramy 

ekosystemu. Wszystko zaczęło się od epoki 

przemysłowej – spalanie węgla i innych paliw 

kopalnych pozwoliło uwolnić energię zaku-

mulowaną przez miliony lat. Poprzednie cy-

wilizacje żyły tylko dzięki energii słońca, 

która docierała w trakcie ich życia, my doko-

paliśmy się, dosłownie, do energii, która tra-

fiła na Ziemię przed milionami lat i została 

wbudowana przez dawne organizmy 

w swoje ciała. Nauka i technologia zaczęły 

rosnąć wykładniczo. Wkroczyliśmy w epokę 

poznawania DNA, eksploracji kosmosu i two-

rzenia Internetu, sztucznej inteligencji. Na-

stąpiła eksplozja populacji i globalizacja. 

Dzięki taniej energii powstały globalne mia-

sta, transport, medycyna, podwoiła się dłu-

gość życia (Smil, 2017). Dla cywilizacji nastąpił 

niewyobrażalny  skok w wielu aspektach, ale 

nowy trybik w cyklu węglowym przyniósł 

także  załamanie w kwestiach społecznych 

i środowiskowych. Wydaje się, że nasza cywi-

lizacja jest jak olbrzym naszpikowany tech-

nologią (zgodnie z prawami postępu), sto-

jący jednak na glinianych nogach. Jedna to 

społeczeństwo, które wydaje się nieprzygo-

towane do ciężaru, które przynoszą nowe 

technologie. Druga to środowisko. Nadal je-

steśmy zależni od Ziemi, jedynego miejsca 

w znanym nam obecnie wszechświecie, 

gdzie możemy żyć (Steffen i in., 2015). 

A mimo to beztrosko traktujemy granice jej 

wytrzymałości.  

Namysł nad tym, co przemiany w cyklu 

węgla oznaczają dla cywilizacji i gatunku 

Homo sapiens moglibyśmy jeszcze długo 

kontynuować. Eksplozja cywilizacji wprowa-

dziła wiele przełomów i otworzyła mnóstwo 

furtek. Świat przyspieszył. Epoki, które kiedyś 

trwały setki lat, zaczęły następować po sobie 

dekada po dekadzie. Paliwa kopalne pozwo-

liły zintensyfikować rozwój ludzkości. Warto 

jednak wrócić do głównego wątku: procesy, 

które uruchomiliśmy w kontekście przemian 

węgla podlegają prawom głównego cyklu 

węgla. Chodzi o to, że paliwa kopalne się 

skończą, a być może nasze funkcjonowanie 

na Ziemi zostanie „zweryfikowane” w mo-

mencie uruchomienia punktów krytycznych. 

Nie jesteśmy samowystarczalni, w krytyczny 

sposób zależąc od wielu innych istot – nie 

tylko naszego gatunku, ale także wielu stwo-

rzeń pozaludzkich. Zrozumienie tego prowa-

dzi do idei symbiocenu – epoki wzajemnych 

powiązań i współistnienia, w której człowiek 

nie stawia się ponad naturą, lecz uznaje się 

za jej część. W symbiocenie każda forma ży-

cia, niezależnie od gatunku, uznawana jest za 

współtwórcę wspólnego świata – sieci po-

wiązań, w której dobrostan jednych zależy 

od dobrostanu wszystkich. 

Zaburzenie cyklu węgla oznacza, więc, dla 

cywilizacji i gatunku ludzkiego tyle, że po-

mimo tymczasowych sukcesów cywilizacyj-

nych koniec końców podlegamy prawom, 

które rządzą planetą od milionów lat. 

…na jednostki 

To wszystko wydaje się tak dalekie i nie-

wyobrażalne – system klimatyczny, dzieje ży-

cia na Ziemi, nawet cywilizacja. Warto wrócić 

na chwilę do czegoś namacalnego i bli-

skiego. Spojrzeć z Własnej perspektywy. Ro-

zejrzyjmy się i wyobraźmy sobie, że każdy 

przedmiot na który patrzymy znika, jeśli jest 

w jakimś stopniu powiązany z paliwami ko-

palnymi. Pierwsze pewnie znikają rzeczy 

z tworzyw sztucznych, pochodne ropy nafto-

wej. Dalej metal i szkło, przecież żeby je 

przetopić trzeba wykorzystać odpowiednie 

paliwo. A rzeczy z drewna? Gdzieś musiano 

ściąć drzewo i je przetransportować. Nagle 

świat staje się nagi… tak jak my – w końcu 

ubrania to suma przebytych kilometrów, czę-

sto z drugiego końca świata, a tkaniny 

zresztą nierzadko zawierają domieszki 

sztucznych materiałów. Nawet wzięcie kęsa 

do ust (żywność to nawozy sztuczne, trans-

port, chłodnie i opakowania) czy łyka wody 
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(z plastikowej butelki czy wody z kranu, która 

przepłynęła kilometrami polietylenowych 

rur) nie może obejść się bez wykorzystania 

paliw kopanych. (Yergin, 2011). 

Podejdźmy jeszcze bliżej. Spójrzmy na 

nasze ciało. Węgiel stanowi około 18% masy 

ciała człowieka (Davey, 2023) . Przy wadze 

70 kg daje to około 12,6 kg tego pierwiastka. 

Obecnie może troszkę więcej bo każdy z nas 

doprawiony jest szczyptą mikroplastiku (My-

ridakis, 2025). Węgiel to nie tylko kilogramy 

budulca stanowiącego nasz organizm, to też 

przepis na to jacy jesteśmy. Nasz kolor oczu, 

grupa krwi, cechy twarzy – to wszystko ko-

duje węgiel wraz z innymi pierwiastkami 

w DNA. To instrukcja budowy i działania 

organizmu. Ważąc ok. 70 kg zawieramy 

ponad 600 kwadrylionów miliardów atomów 

węgla. A każdy z tych atomów powstał 

miliardy lat temu, w procesach opisanych 

powyżej. 
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Notka o autorce: Zajmuję się zagadnieniami 

związanymi z ochroną środowiska, energe-

tyką i zrównoważonym rozwojem. Posiadam 

wieloletnie doświadczenie w doradztwie dla 

sektora publicznego i prywatnego w zakresie 

ochrony środowiska i klimatu. Z pasją anga-

żuję się w projekty społeczne i obywatelskie, 

podnoszenie świadomości oraz promowanie 

aktywności społecznej. Obecnie biorę udział w 

drugiej edycji programu rezydencyjnego 

STUDIOTOPIA, który ma na celu przełamy-

wanie barier między różnymi dyscyplinami 

nauki przez promowanie innowacyjnych, in-

terdyscyplinarnych podejść. W ramach tego 

programu pracuję nad wyzwaniem zatytuło-

wanym „Thermal Thinking: Beyond the Re-

presentation in Research”. 
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