
 

WspółczesnaGospodarka 

 
Contemporary Economy Vol. 10 Issue 1 (2019) 55-68 

Electronic Scientific Journal ISSN2082-677X 

http://en.wspolczesnagospodarka.pl/ DOI 10.26881/wg.2019.1.06 

ARIMA MODEL USED TO ANALYZE THE DEMAND FOR 

SWIMMING POOL SERVICES 

Mieczysław Pawlisiak 

Abstract 

Many factors influence customer preferences among those who choose active leisure. A 

wide range of market productsmakes for many opportunities, and sports facilities are 

required to be fully prepared to provide services. It is helpful to create forecasts that 

enable to determine the predictable number of clients. An example prediction made with 

respect to swimming pools is presented in this article. For this purpose, the ARIMA 

model was used, based on the assumption that the value of the endogenous variable is 

affected by the value of this variable laggedin time. 
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Introduction 

The knowledge of demand formation is an extremely useful element in the functioning of any 

enterprise. It not only allows for a better adjustment to the needs reported by the market, but is 

also an excellent tool for gaining a competitive advantage. Forecastsalso allow shaping an 

important element of each company, which is its readiness to perform specific activities. This 

applies not only to civilian-run enterprises operating within a market economy, but also to state 

institutions, in which readiness to perform tasks is one of the most important parameters 

(Borucka, 2018). The concept of readiness is usually identified with the exploitation of 

technical objects (Waśniewski, Borucka, 2011; Borucka, 2018) and expressed as a probability 

that the object will be ready to fulfill its tasks in a given moment or in a given period of time. 

The literature on the subject examines the readiness of individual elements of machines and 

devices (Świderski, Borucka, 2018), vehicles (Borucka, 2013) or entire systems. Particularly 

frequently considered are those that require quick and appropriate actions such as emergency 
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medical services or the fire brigade, but also those that operate on the basis of fixed timetables, 

such as passenger transport (Borucka, 2018) or delivery of goods (Bielińska, 2007, Borucka, 

2018). As regards the flow of means of transport, the influence of factors that may hinder it is 

also analyzed, e.g. road accidents (Czyżycki, Hundert, Klóska, 2007; Świderski, Borucka, 

Jacyna-Gołda, Szczepański, 2019; Borucka, 2014) or congestion in urban traffic (Borucka, 

2018). Readiness applies to the facilities, systems as well as the staff operating them. The 

degree of competence and preparation of employees affects the reliability of the entire system 

(Dittmann, Szabebela-Pasierbińska, Dittmann, Szpulak, 2011). In facilities such as swimming 

pools, the level of readiness determines the speed of response to a threat by lifeguards on 

continuous watch, i.e. persons with knowledge and skills in water rescue and swimming 

techniques as well as other qualifications useful in this line of duty, (Świderski, Skoczyński, 

Borucka, 2018). 

1. Introduction to the ARIMA model 

A sequence of information ordered in time is a time series. Autoregressive models are someof 

the possible forecasting models, based on time series analysis, (1), comprising a group for 

which it is assumed that there is a relationship between the values of a time series at a given 

moment and the prior values of this series, distant from each other by a certain time interval 

(Sokołowski, 2016). 

𝑦𝑡 = 𝑓(𝑦𝑡−1 ,𝑦𝑡−2,… ,𝑦𝑡−𝑝 , 𝜀 𝑡)  (1) 

Therefore, the value of the forecast variable is estimated on the basis of its own 

components, which are distant in time. They are a function, i.e. they depend on the value of the 

variable y in previous periods and on the random component. Such models have restrictions in 

their applicability. They can only be used for stationary series or series converted into stationary 

form by means of specific transformations (Borucka, 2014; Żurek, Ziółkowski, Borucka, 2017). 

For series characterized by a variable average value, variance or slope, the operation enabling 

the reduction to stationary form is the procedure of d-fold differentiation, i.e. d-fold calculation 

of differences in adjacent terms of the series. These series are referred to as integrated series and 

can be represented by autoregressive models which include: 

- autoregressive models of the AR(p) type, 

- moving average model MA(q), 

- ARMA (Autoregressive moving average) models, 

- ARIMA (Autoregressive integrated moving average) models. 

In the AR autoregressive model, a relation occurs between the values of the forecast 

variable and its values lagged in time. Its estimation consists in determining the parameter p 

(order of autoregression), which informs how far one should reach into the past when selecting 

exogenous variables in the model. If the value of the examined series is correlated with its 

previous value, then we are dealing with a first order autoregressive model - AR(1). In the MA 

moving average process, the values of the endogenous variable are expressed as a function of 

the lagged values of the stationary random component. The parameter q of this process, i.e. the 

order of the MA process, indicates the level of lags adopted for the model (Borucka, 2018).  

The combination of these processes results in the ARMA process, which allows for greater 

efficiency and flexibility in adapting the model to the time series. Its construction is based on 

the assumption that the value of the forecast variable at time t depends both on its past values 

and on the differences between the past actual values of the forecast variable and its values 

obtained from the model (forecast errors). When the analyzed series isnon-stationary but has 

beenconverted to stationary by determining the differences of the appropriate order, called the 

process integration order, the ARIMA model is obtained. The use of the letter I means that the 

series has been subjected to the d-fold differentiation operation. The presented models are short-
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term forecasts and are one of the most important forecasting tools (Żurek, Ziółkowski, Borucka, 

2017). 

2. Characteristics of the tested subject 

The tested subject is one of the swimming pools in Warsaw, Poland. The information provided 

refers to the number of its customers. It was gathered between December 2017 until mid-

December 2018. The last 14 observations were not included in the estimation, but were left as 

test observations in order to verify the model. Missing data, resulting from the national and 

religious holidays, were replaced by an average value calculated for specific days of the week in 

individual months, which resulted from the weekly and monthly seasonality visible on the graph 

(Fig. 1). 
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Figure 1: Daily number of customers at the swimming pool in the period: December 2017 – 

November 2018. 

Source: author’s own work. 

First, a visual analysis of the graph (Fig. 1) was carried out.It seemed that the best solution 

would be a multiple regression model, but after its preparation and investigation,it turned out 

that the distribution of residuals wasnot consistent with the normal distribution and that 

dependencies unexplained by the model occurred in it (significant correlations on the graph of 

autocorrelation and partial autocorrelation functions). Therefore, another method of forecasting, 

using the ARIMA model, is proposed in this article. Since the seasonality of the process is 

clearly visible in on the graph (Fig. 1), it was decided to divide the year into two periods, 

determining the high season, during which the number of customers is much higher than the 

average value and the low season, characterized by a lower daily frequency of attendance. The 

gathered number of observations allowed for such a procedure, because the ARIMA model 

requires a minimum of 60 observations. In addition to the basic measures of descriptive 

statistics contained in the table 1, the frame diagram presented in Fig. 2 showing the monthly 

seasonality of the process also proved to be helpful. 

Table 1: Basic measures of descriptive statistics for the entire sample. 

Month 

Number of 

observatio

ns 

Mean 

[number of 

persons] 

Median 

[number of 

persons] 

Minimum 

[number of 

persons] 

Maximum 

[number of 

persons] 

Standard 

deviation 

[number of 

persons] 

Coefficie

nt of 

variation 

[%] 

The entire 

sample 
365 149 138 42 344 61.31 41.24 



Mieczysław Pawlisiak 58 

Month 

Number of 

observatio

ns 

Mean 

[number of 

persons] 

Median 

[number of 

persons] 

Minimum 

[number of 

persons] 

Maximum 

[number of 

persons] 

Standard 

deviation 

[number of 

persons] 

Coefficie

nt of 

variation 

[%] 

January 31 203 202 118 293 50.14 24.76 

February 28 171 183 108 240 42.70 25.00 

March 31 95 112 47 132 31.81 33.40 

April 30 110 128 52 162 39.58 36.08 

May 31 110 121 72 147 28.88 26.26 

June 30 174 193 111 221 37.14 21.32 

July 31 198 196 111 344 65.16 32.91 

August 31 209 204 128 303 55.70 26.60 

September 30 104 121 57 143 31.45 30.23 

October 31 99 113 42 145 32.10 32.35 

November 30 111 121 60 165 36.83 33.19 

December 31 199 200 118 282 33.35 16.76 

Source: author’s own work. 
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Figure 2: Monthly frame diagram for the entire sample. 

Source: author’s own work. 

On the basis of the above analyses, it was decided to divide the studied period into two 

seasons. The following months were qualified for the low season: March, April, May, 

September, October and November. The high season included: January, February, June, July, 

August and December. Each period is described in a separate model. 

3. Low season assessment 

The first stage of the study is a visual analysis of the low season observation graph (Fig. 1 3) 
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Figure 3: Number of customers in low season. 

Source: author’s own work. 

The graph presents weekly fluctuations, but their level seems to be constant over time. 

In such a defined sample the coefficient of variation and standard deviation decreased 

in comparison to the results for all observations (table 2). 

 

Table 2: Values of selected measures of descriptive statistics for the low season. 

Descriptive statistics (low season) 

Number of  

observations 

Mean 

[number 

of persons] 

Median  

[number 

of persons] 

Minimum 

 [number 

of persons] 

Maximum 

 [number 

of persons] 

Standard deviation  

[number 

of persons] 

Coefficient 

of variation 

[%] 

183 104 11 42 165 33.66 32.12 

Source: author’s own work.  

A sample prepared in such a way allows estimating the parameters of the ARIMA model. 

Helpful in determining their type and number are the diagrams of autocorrelation (ACF) and 

partial autocorrelation (PACF), presented in the Figure 4. The sinusoidal shape of the ACF and 

the high values of the PACF suggest a positive value of both the autoregressive p and the 

moving average qparameters. 
ACF

 CI-1,0 -0,5 0,0 0,5 1,0
0
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 14 +,786 ,0707

 13 +,393 ,0709
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  Q p
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Figure 4: ACF and PACF graph for the low season. 

Source: author’s own work. 
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Several models were estimated and on the basis of the evaluation of statistical significance 

of their parameters and the value of the MS error, the best one was selected, described by two 

moving average parameters (q) and two seasonal autoregressive parameters (Ps) - ARIMA 

(0.1.2)(2.0.0). In order to eliminate the diagnosed weekly seasonality, a seasonal differentiation 

with a lag equal 7 was carried out. The results are presented in the Table 3. 

 

Table 3: Parameters of the ARIMA model (0,1,2)(2,0,0) 

Parameter 

Model:(0,1,2)(2,0,0) Seasonal lag: 7  

MS= 247.30 

Parameter value 
 

Standard error 
 

t( 178) 
 

p 
 

Lower limit 

95% CI 
 

Upper limit 

95% CI 
 

q(1) 
 

0.70 0.07 10.51 0.00 0.56 0.83 

q(2) 
 

0.29 0.07 4.33 0.00 0.16 0.42 

Ps(1) 
 

0.66 0.07 8.82 0.00 0.51 0.81 

Ps(2) 
 

0.27 0.08 3.58 0.00 0.12 0.42 

Source: author’s own work. 

Diagnostics of the developed model consists mainly in checking whether there are any 

significant correlations between individual lags in the residuals of the model. For this purpose, 

the autocorrelation and partial autocorrelation function was drawn up again, this time for the 

residuals of the model (Fig. 5). 

 
ACF of  the residuals of  the ARIMA model (0,1,2)(2,0,0)

 CI-1,0 -0,5 0,0 0,5 1,0
0

 15 -,009 ,0706

 14 -,076 ,0708

 13 +,001 ,0710

 12 -,047 ,0712

 11 +,014 ,0715

 10 +,018 ,0717

  9 -,010 ,0719

  8 +,107 ,0721

  7 -,025 ,0723

  6 +,022 ,0725

  5 +,044 ,0727

  4 -,131 ,0729

  3 -,064 ,0731

  2 +,121 ,0733

  1 +,036 ,0735

Opóźn Kor. S.E

0

11,47 ,7183

11,46 ,6498

10,29 ,6698

10,29 ,5903

 9,85 ,5440

 9,81 ,4575

 9,75 ,3715

 9,73 ,2847

 7,53 ,3763

 7,41 ,2846

 7,32 ,1979

 6,95 ,1386

 3,72 ,2934

 2,96 ,2281

  ,23 ,6287

  Q p

PACF of  the residuals of  the ARIMA model (0,1,2)(2,0,0)

 CI-1,0 -0,5 0,0 0,5 1,0
0

 15 +,006 ,0741

 14 -,076 ,0741

 13 -,010 ,0741

 12 -,018 ,0741

 11 +,013 ,0741

 10 -,013 ,0741

  9 +,018 ,0741

  8 +,094 ,0741

  7 -,065 ,0741

  6 +,051 ,0741

  5 +,073 ,0741

  4 -,144 ,0741

  3 -,073 ,0741

  2 +,120 ,0741

  1 +,036 ,0741

Opóźn Kor. S.E

 

Figure 5: ACF and PACF graphs for the residuals of the ARIMA model (0,1,2)(2,0,0). 

Source: author’s own work. 

The criterion of normality of residuals was also checked. Unfortunately, the Shapiro–Wilk 

test did not confirm this feature of the distribution (Fig. 5) 
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Figure 6: Normality test of residuals of the ARIMA model (0,1,2)(2,0,0). 

Source: author’s own work. 

The non-normality of the distribution results from numerous overestimations of the 

forecast visible in Fig. 6. The forecast works much better on days when the number 

of swimmers is lower. However, the average forecast error equals 11 people. Such a value 

makes it possible to consider the model useful in view of the assumed objectives of adjusting 

the number of lifeguards to the number of swimmers. 
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Figure 7: Graph of empirical and projected values for the ARIMA model (0,1,2)(2,0,0). 

Source: author’s own work. 

4. High season assessment 

Similarly to the low season, the first stage of the study of high season is its visual analysis 

(Fig. 7). 
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Number of swimmers in low season
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Figure 8: Number of customers in high season. 

Source: author’s own work. 

The high season graph also shows weekly fluctuations of a relatively constant level over 

time. This is the information to be included in the model, performing seasonal differentiation 

with a lag equal 7. For the second subsample the basic measures of descriptive statistics were 

determined, presented in Table 3. The value of the coefficient of variation is lower than in the 

low season, but the standard deviation has increased. The mean value for the high season 

increased by more than 80%, which confirms the legitimacy of such a division.  

 

Table 4: Values of selected measures of descriptive statistics for the high season. 

Descriptive statistics (high season) 

Number of 

observations 

Mean 

[number 

of persons] 

Median 

[number 

of persons] 

Minimum 

[number 

of persons] 

Maximum 

[number 

of persons] 

Standard deviation 

[number 

of persons] 

Coefficient 

of variation 

[%] 

182 192 197 108 303 48.78 25.39 

Source: author’s own work. 

In order to support the process of estimation of ARIMA model parameters, the ACF and 

PACF was determined again, this time for the high season 8. 

 
ACF
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Fig. 9. ACF and PACF graph for the high season. 

Source: author’s own work. 

The shape of the ACF is very similar to the low season graph, but the values of individual 

lags are smaller. The PACF is also similar, the layout of statistically significant lags is slightly 

different and their value is also lower than in the low season. Therefore, the model will also 

consist of both moving average parameters qand autoregressive parametersp. The best of the 

models was selected again on the basis of evaluation of statistical significance of their 

parameters and the value of the MS error. In order to even out the variance, the differentiation 

was made with a lag equal 7. After this procedure the ARIMA model (0,1,1)(2,0,0) was 

selected, described by one moving average parameter (q) and two seasonal autoregressive 

parameters (Ps). 4.  

Table 5: Parameters of the ARIMA model (0,1,1)(2,0,0). 

Parameter 

Model:(0,1,1)(2,0,0) Transformations: D(7) 

Seasonal lag: 7 MS= 975.03 

Parameter value Standard error t( 178) p 
Lower limit 

95% CI 

Upper limit 

95% CI 

q(1) -0.27 0.07 -3.76 0 -0.41 -0.13 

Ps(1) -0.44 0.07 -5.93 0 -0.59 -0.3 

Ps(2) -0.27 0.08 -3.46 0 -0.43 -0.12 

Source: author’s own work. 

The most important element of diagnostics is, of course, the analysis of the ACF and PACF 

graphs of the residuals of the constructed model, in order to check the statistical significance of 

lag values. They could indicate existing dependencies unexplained by the model (Fig. 9). 

 

ACF of the residuals of the ARIMA model (0,1,1)(2,0,0)
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Figure 10: ACF and PACF graphs for the residuals of the ARIMA model (0,1,1)(2,0,0). 

Source: author’s own work. 

The distribution of residuals is closer to normal distribution (p-value=0.00029 in the 

Shapiro-Wilk test), however, it still did not allow for the assumption of the H0 null hypothesis 

of normality of distribution at the level of significance α=0.05𝛼 = 0.05 (Fig. 10). 
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Figure 11: Normality test of residuals of the ARIMA model (0,1,1)(2,0,0). 

Source: author’s own work. 

The non-normality of distribution was again influenced by high variability of empirical 

data, resulting in overestimation of the forecast, as shown in Fig. 12. For the high season, the 

average forecast error was 22 people, which is much higher and indicates a worse fit compared 

to the previous model for the low season. 
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Figure 12: Graph of empirical and projected values for the ARIMA model  (0,1,1)(2,0,0). 

Source: author’s own work. 

However, it is best to assess the proposed models in real life conditions, verifying how they 

managed to determine the potential number of swimming pool customers. For this purpose, the 

recorded test observations from the first days of December, which were not included in the 

construction of models, were used. The Table5presents the actual observation value and the 

forecast together with the relative error of the forecast. 

 

Table 6: Comparison of forecast and test observations for December 2018 

date observation no. forecast empirical data relative error of the forecast ψ [%] 
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date observation no. forecast empirical data relative error of the forecast ψ [%] 

2018-12-01 366 233.7795 224 4.37 

12/2/2018 367 278.1835 271 2.65 

12/3/2018 368 240.3599 233 3.16 

12/4/2018 369 140.2660 150 6.49 

12/5/2018 370 142.8584 133 7.41 

12/6/2018 371 163.3989 158 3.42 

12/7/2018 372 211.4756 200 5.74 

12/8/2018 373 232.9656 223 4.47 

12/9/2018 374 285.6192 270 5.78 

12/10/2018 375 227.3252 222 2.40 

12/11/2018 376 145.7672 150 2.82 

12/12/2018 377 144.2306 147 1.88 

12/13/2018 378 168.0041 165 1.82 

12/14/2018 379 220.1948 210 4.85 

Source: author’s own work. 

 

The average forecast error is 4%, which is a very good result. However, most forecasts are 

overestimated, which from the point of view of the swimming pool is a better result than the 

opposite situation, as it is better to secure the level of safety of users by anticipating their larger 

number, which will allow a certain reserve of readiness to be maintained. The graph of the 

analyzed time series including test observations and forecasts is presented in Fig. 11.  

 

 

Figure 13: Graph of the examined series, test observations and forecasts. 

Source: author’s own work. 

The forecasts constructed in such a way allow determining the appropriate number of 

lifeguards in relation to the users of the swimming pool and not its area. For example, they 

make it possible to determine the number of permanent employees, which can be supplemented 

by seasonal employees during periods of increased interest. Moreover, they make it possible to 
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determine the necessary rescue equipment (lifebuoys, life jackets, medical equipment, 

medicines and sanitary articles) not only in accordance with the law (Żurek, Ziółkowski, 

Borucka, 2017), but in relation to the actual number of customers of the swimming pool. 

 

Conclusions. 

The article presents an example of a practical use of the ARIMA model for forecasting the 

number of swimming pool users. Using the analysis of time series based on the dependence of 

the examined feature (variable) on time, conclusions were formulated concerning the dynamics 

of the studied phenomenon in the nearest future. Such forecasts may supplement the existing 

legislation, which defines only minimum requirements for the safety of swimmers with regard 

to the area of the pool and not the degree to which they are populated by swimmers. The 

obtained forecast errors result in it being only able to play an advisory role, but the task of each 

forecast is only to support management processes, and not to provide ready-made answers. In 

addition, each of them requires constant monitoring and adaptation to changing circumstances. 
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MODEL ARIMA W ZASTOSOWANIU DO ANALIZY POPYTU NA 

USŁUGI PŁYWALNI 

Streszczenie 

Na preferencje klientów wybierających aktywną formę spędzania wolnego czasu wpływa 

wiele czynników. Bogata oferta rynkowa daje szerokie możliwości, a od obiektów 

sportowych wymaga się, aby pozostawały w pełnej gotowości do świadczenia usług. 

Pomocne w takim przygotowaniu jest konstruowanie prognoz umożliwiających 

określenie przewidywalnej liczby klientów. Przykład takiej predykcji, sporządzonej na 

podstawie pływalni, przedstawiono w niniejszym artykule. W tym celu wykorzystano 

model ARIMA bazujący na założeniu, że na wartość zmiennej objaśnianej wpływa 

wartość tej zmiennej opóźniona w czasie.  

 

Słowa kluczowe:model ARIMA, ratownictwo wodne, gotowość, pływalnia, 

bezpieczeństwo 
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