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ARIMA MODEL USED TO ANALYZE THE DEMAND FOR
SWIMMING POOL SERVICES

Mieczystaw Pawlisiak

Abstract

Many factors influence customer preferences among those who choose active leisure. A
wide range of market productsmakes for many opportunities, and sports facilities are
required to be fully prepared to provide services. It is helpful to create forecasts that
enable to determine the predictable number of clients. An example prediction made with
respect to swimming pools is presented in this article. For this purpose, the ARIMA
model was used, based on the assumption that the value of the endogenous variable is
affected by the value of this variable laggedin time.

Keywords: ARIMA model, lifeguarding and water rescue, readiness, swimming pool,
swimming baths, safety

JEL classification: C2, C22.

Introduction

The knowledge of demand formation is an extremely useful element in the functioning of any
enterprise. It not only allows for a better adjustment to the needs reported by the market, but is
also an excellent tool for gaining a competitive advantage. Forecastsalso allow shaping an
important element of each company, which is its readiness to perform specific activities. This
applies not only to civilian-run enterprises operating within a market economy, but also to state
institutions, in which readiness to perform tasks is one of the most important parameters
(Borucka, 2018). The concept of readiness is usually identified with the exploitation of
technical objects (Wasniewski, Borucka, 2011; Borucka, 2018) and expressed as a probability
that the object will be ready to fulfill its tasks in a given moment or in a given period of time.
The literature on the subject examines the readiness of individual elements of machines and
devices (Swiderski, Borucka, 2018), vehicles (Borucka, 2013) or entire systems. Particularly
frequently considered are those that require quick and appropriate actions such as emergency
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medical services or the fire brigade, but also those that operate on the basis of fixed timetables,
such as passenger transport (Borucka, 2018) or delivery of goods (Bielinska, 2007, Borucka,
2018). As regards the flow of means of transport, the influence of factors that may hinder it is
also analyzed, e.g. road accidents (Czyzycki, Hundert, Kléska, 2007; Swiderski, Borucka,
Jacyna-Gotda, Szczepanski, 2019; Borucka, 2014) or congestion in urban traffic (Borucka,
2018). Readiness applies to the facilities, systems as well as the staff operating them. The
degree of competence and preparation of employees affects the reliability of the entire system
(Dittmann, Szabebela-Pasierbinska, Dittmann, Szpulak, 2011). In facilities such as swimming
pools, the level of readiness determines the speed of response to a threat by lifeguards on
continuous watch, i.e. persons with knowledge and skills in water rescue and swimming
techniques as well as other qualifications useful in this line of duty, (Swiderski, Skoczynski,
Borucka, 2018).

1. Introduction to the ARIMA model

A sequence of information ordered in time is a time series. Autoregressive models are someof
the possible forecasting models, based on time series analysis, (1), comprising a group for
which it is assumed that there is a relationship between the values of a time series at a given
moment and the prior values of this series, distant from each other by a certain time interval
(Sokotowski, 2016).

Ve = fVe-1,YVe-2) o Ye—pr € t) (1)

Therefore, the value of the forecast variable is estimated on the basis of its own
components, which are distant in time. They are a function, i.e. they depend on the value of the
variable y in previous periods and on the random component. Such models have restrictions in
their applicability. They can only be used for stationary series or series converted into stationary
form by means of specific transformations (Borucka, 2014; Zurek, Ziétkowski, Borucka, 2017).
For series characterized by a variable average value, variance or slope, the operation enabling
the reduction to stationary form is the procedure of d-fold differentiation, i.e. d-fold calculation
of differences in adjacent terms of the series. These series are referred to as integrated series and
can be represented by autoregressive models which include:

- autoregressive models of the AR(p) type,

- moving average model MA(q),

- ARMA (Autoregressive moving average) models,

- ARIMA (Autoregressive integrated moving average) models.

In the AR autoregressive model, a relation occurs between the values of the forecast
variable and its values lagged in time. Its estimation consists in determining the parameter p
(order of autoregression), which informs how far one should reach into the past when selecting
exogenous variables in the model. If the value of the examined series is correlated with its
previous value, then we are dealing with a first order autoregressive model - AR(1). In the MA
moving average process, the values of the endogenous variable are expressed as a function of
the lagged values of the stationary random component. The parameter g of this process, i.e. the
order of the MA process, indicates the level of lags adopted for the model (Borucka, 2018).

The combination of these processes results in the ARMA process, which allows for greater
efficiency and flexibility in adapting the model to the time series. Its construction is based on
the assumption that the value of the forecast variable at time t depends both on its past values
and on the differences between the past actual values of the forecast variable and its values
obtained from the model (forecast errors). When the analyzed series isnon-stationary but has
beenconverted to stationary by determining the differences of the appropriate order, called the
process integration order, the ARIMA model is obtained. The use of the letter | means that the
series has been subjected to the d-fold differentiation operation. The presented models are short-
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term forecasts and are one of the most important forecasting tools (Zurek, Ziotkowski, Borucka,
2017).

2. Characteristics of the tested subject

The tested subject is one of the swimming pools in Warsaw, Poland. The information provided
refers to the number of its customers. It was gathered between December 2017 until mid-
December 2018. The last 14 observations were not included in the estimation, but were left as
test observations in order to verify the model. Missing data, resulting from the national and
religious holidays, were replaced by an average value calculated for specific days of the week in
individual months, which resulted from the weekly and monthly seasonality visible on the graph

(Fig. 1).
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Figure 1: Daily number of customers at the swimming pool in the period: December 2017 —
November 2018.

Source: author’s own work.

First, a visual analysis of the graph (Fig. 1) was carried out.It seemed that the best solution
would be a multiple regression model, but after its preparation and investigation,it turned out
that the distribution of residuals wasnot consistent with the normal distribution and that
dependencies unexplained by the model occurred in it (significant correlations on the graph of
autocorrelation and partial autocorrelation functions). Therefore, another method of forecasting,
using the ARIMA model, is proposed in this article. Since the seasonality of the process is
clearly visible in on the graph (Fig. 1), it was decided to divide the year into two periods,
determining the high season, during which the number of customers is much higher than the
average value and the low season, characterized by a lower daily frequency of attendance. The
gathered number of observations allowed for such a procedure, because the ARIMA model
requires a minimum of 60 observations. In addition to the basic measures of descriptive
statistics contained in the table 1, the frame diagram presented in Fig. 2 showing the monthly
seasonality of the process also proved to be helpful.

Table 1: Basic measures of descriptive statistics for the entire sample.

Number off  Mean Median Minimum Maximum géi?;?gﬂ Corftfgfle
Month observatio| [number of | [number of | [number of | [number of L
ns ersons] ersons] ersons] ersons] [number of | variation
P P P P persons] [%]
The ~entirel g5 149 138 42 344 61.31 41.24
sample
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Number of Mean Median Minimum Maximum c?;?/?:t?gi Conetfgl;:le
Month observatio| [number of | [number of | [number of | [number of [number of | variation
ns persons] persons] persons] persons] persons] [%]
January 31 203 202 118 293 50.14 24.76
February 28 171 183 108 240 42.70 25.00
March 31 95 112 47 132 31.81 33.40
April 30 110 128 52 162 39.58 36.08
May 31 110 121 72 147 28.88 26.26
June 30 174 193 111 221 37.14 21.32
July 31 198 196 111 344 65.16 32.91
August 31 209 204 128 303 55.70 26.60
September 30 104 121 57 143 31.45 30.23
October 31 99 113 42 145 32.10 32.35
November 30 111 121 60 165 36.83 33.19
December 31 199 200 118 282 33.35 16.76
Source: author’s own work.
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Figure 2: Monthly frame diagram for the entire sample.

Source: author’s own work.

On the basis of the above analyses, it was decided to divide the studied period into two
seasons. The following months were qualified for the low season: March, April, May,
September, October and November. The high season included: January, February, June, July,
August and December. Each period is described in a separate model.

3. Low season assessment

The first stage of the study is a visual analysis of the low season observation graph (Fig. 1 3)
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Figure 3: Number of customers in low season.

Source: author’s own work.

The graph presents weekly fluctuations, but their level seems to be constant over time.
Insuch a defined sample the coefficient of variation and standard deviation decreased
in comparison to the results for all observations (table 2).

Table 2: Values of selected measures of descriptive statistics for the low season.

Descriptive statistics (low season)

Number of Mean Median Minimum Maximum |Standard deviation| Coefficient
observations [number [number [number [number [number of variation
of persons] | of persons] | of persons] | of persons] of persons] [9%0]
183 104 11 42 165 33.66 32.12

Source: author’s own work.

A sample prepared in such a way allows estimating the parameters of the ARIMA model.
Helpful in determining their type and number are the diagrams of autocorrelation (ACF) and
partial autocorrelation (PACF), presented in the Figure 4. The sinusoidal shape of the ACF and
the high values of the PACF suggest a positive value of both the autoregressive p and the
moving average gparameters.

ACF PACF
Opdzn Kor. S.E Q P Opdin Kor. S.E
1 +,417 ,0733 B= 32,30 ,0000 1 +,417 ,0739 ]
2 -,113 ,0731 B 34,70 ,0000 2 -,347 ,0739
3 -,644 ,0729 112,8 0,000 3 -,600 ,0739
4 -,626 ,0727 186,8 0,000 4 -,321 ,0739
5 -,085 ,0725 | 188,1 0,000 5 +,204 ,0739 =R
6 +,415 ,0723 B 221,0 0,000 6 +,126 ,0739 ]
7 +,864 ,0721 B (364,7 0,000 7 +,662 ,0739 e
8 +,364 ,0719 ] 390,4 0,000 8 -,136 ,0739 =
9 -,133 ,0717 B 393,8 0,000 9 +,061 ,0739 0
10 -,619 ,0715 =" 468,8 0,000 10 +,051 ,0739 0
11 -,566 ,0713 1 532,0 0,000 11 +,068 ,0739 0
12 -,072 ,0711 i 533,0 0,000 12 -,077 ,0739 0
13 +,393 ,0709 ] 563,8 0,000 13 -,028 ,0739 1
14 +,786 ,0707 [T ] {e87,4 0,000 14 +,175 ,0739 1
15 +,315 ,0704 N 707,5 0,000 15 -,087 ,0739 il
0 0 0
-1,0 -0,5 0,0 0,5 10 — ClI -1,0 -0,5 0,0 0,5 1,0 — ClI

Figure 4: ACF and PACF graph for the low season.

Source: author’s own work.
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Several models were estimated and on the basis of the evaluation of statistical significance
of their parameters and the value of the MS error, the best one was selected, described by two
moving average parameters (q) and two seasonal autoregressive parameters (Ps) - ARIMA
(0.1.2)(2.0.0). In order to eliminate the diagnosed weekly seasonality, a seasonal differentiation
with a lag equal 7 was carried out. The results are presented in the Table 3.

Table 3: Parameters of the ARIMA model (0,1,2)(2,0,0)

Model:(0,1,2)(2,0,0) Seasonal lag: 7
MS=247.30
Parameter Lower limit Upper limit
Parameter value |Standard error| t(178) p 95% Cl 95% Cl

q(1) 0.70 0.07 10.51 0.00 0.56 0.83
q(2) 0.29 0.07 4.33 0.00 0.16 0.42
Ps(1) 0.66 0.07 8.82 0.00 0.51 0.81
Ps(2) 0.27 0.08 3.58 0.00 0.12 0.42

Source: author’s own work.

Diagnostics of the developed model consists mainly in checking whether there are any
significant correlations between individual lags in the residuals of the model. For this purpose,
the autocorrelation and partial autocorrelation function was drawn up again, this time for the
residuals of the model (Fig. 5).

ACF of the residuals of the ARIMA model (0,1,2)(2,0,0)
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Figure 5: ACF and PACEF graphs for the residuals of the ARIMA model (0,1,2)(2,0,0).

Source: author’s own work.

The criterion of normality of residuals was also checked. Unfortunately, the Shapiro-Wilk

test did not confirm this feature of the distribution (Fig. 5)
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Figure 6: Normality test of residuals of the ARIMA model (0,1,2)(2,0,0).

Source: author’s own work.

The non-normality of the distribution results from numerous overestimations of the
forecast visible in Fig. 6. The forecast works much better on days when the number
of swimmers is lower. However, the average forecast error equals 11 people. Such a value
makes it possible to consider the model useful in view of the assumed objectives of adjusting
the number of lifeguards to the number of swimmers.
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Figure 7: Graph of empirical and projected values for the ARIMA model (0,1,2)(2,0,0).

Source: author’s own work.

4. High season assessment

Similarly to the low season, the first stage of the study of high season is its visual analysis
(Fig. 7).
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Figure 8: Number of customers in high season.

Source: author’s own work.

The high season graph also shows weekly fluctuations of a relatively constant level over
time. This is the information to be included in the model, performing seasonal differentiation
with a lag equal 7. For the second subsample the basic measures of descriptive statistics were
determined, presented in Table 3. The value of the coefficient of variation is lower than in the
low season, but the standard deviation has increased. The mean value for the high season
increased by more than 80%, which confirms the legitimacy of such a division.

Table 4: Values of selected measures of descriptive statistics for the high season.

Descriptive statistics (high season)
Mean Median Minimum Maximum Standard deviation Coefficient
Number of o
. [number [number [number [number [number of variation
observations
of persons] | of persons] | of persons] | of persons] of persons] [%]
182 192 197 108 303 48.78 25.39

Source: author’s own work.

In order to support the process of estimation of ARIMA model parameters, the ACF and
PACF was determined again, this time for the high season 8.

ACF PACF

Opdzn Kor. S.E Q P Opézn Kor. S.E
1 +,449 ,0735 B 37,33 ,0000 1 +,449 ,0741 |
2 -,063 ,0733 | 38,07 ,0000 2 -,332 ,0741
3 -,465 ,0731 78,45 ,0000 3 -,391 ,0741
4 -,448 ,0729 116,1 0,000 4 -,101 ,0741 B
5 -,026 ,0727 I 116,3 0,000 5 +,234 ,0741 =
6 +,419 ,0725 B 149,7 0,000 6 +,271 ,0741 1]
7 +,710 ,0723 B {246,3 0,000 7 +,459 ,0741 ]
8 +,332 ,0721 BE 267,5 0,000 8 -,104 ,0741 =
9 -,106 ,0719 B 269,7 0,000 9 +,027 ,0741 I
10 -,447 ,0717 O 308,6 0,000 10 -,040 ,0741 i
11 -,385 ,0715 R 337,7 0,000 11 +,017 ,0741 I
12 -,034 ,0712 1 337,9 0,000 12 -,084 ,0741 0
13 +,366 ,0710 ] 364,4 0,000 13 +,034 ,0741 1
14 +,606 ,0708 ] 437,717 0,000 14 +,173 ,0741 1
15 +,311 ,0706 ] 457,1 0,000 15 +,046 ,0741 0

0 0 0
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Fig. 9. ACF and PACF graph for the high season.

Source: author’s own work.

The shape of the ACF is very similar to the low season graph, but the values of individual
lags are smaller. The PACEF is also similar, the layout of statistically significant lags is slightly
different and their value is also lower than in the low season. Therefore, the model will also
consist of both moving average parameters gand autoregressive parametersp. The best of the
models was selected again on the basis of evaluation of statistical significance of their
parameters and the value of the MS error. In order to even out the variance, the differentiation
was made with a lag equal 7. After this procedure the ARIMA model (0,1,1)(2,0,0) was
selected, described by one moving average parameter (q) and two seasonal autoregressive
parameters (Ps). 4.

Table 5: Parameters of the ARIMA model (0,1,1)(2,0,0).

Model:(0,1,1)(2,0,0) Transformations: D(7)
Seasonal lag: 7 MS= 975.03
Parameter Lower limit Upper limit
Parameter value Standard error | t(178) p 95% CI 95% ClI
q(1) -0.27 0.07 -3.76 0 -0.41 -0.13
Ps(1) -0.44 0.07 -5.93 0 -0.59 -0.3
Ps(2) -0.27 0.08 -3.46 0 -0.43 -0.12

Source: author’s own work.

The most important element of diagnostics is, of course, the analysis of the ACF and PACF
graphs of the residuals of the constructed model, in order to check the statistical significance of
lag values. They could indicate existing dependencies unexplained by the model (Fig. 9).

ACF of the residuals of the ARIMA model (0,1,1)(2,0,0) PACF of the residuals of the ARIMA model (0,1,1)(2,0,0)

Opdin Kor. S.E Q P Opdzn Kor. S.E

1 +,016 ,0749 | ,05 ,8286 1 +,016 ,0756 I

2 4,057 ,0747 (] , 64 ,7267 2 +,057 ,0756 B

3 -,040 ,0745 ,92 ,8205 3 -,042 ,0756 |

4 -,077 ,0743 ] 1,99 ,7375 4 -,079 ,0756 B

5 +,114 ,0741 B 4,35 ,5001 5 +,122 ,0756 |

6 +,100 ,0739 B 6,20 ,4015 6 +,106 ,0756 B

7 -,013 ,0736 | 6,23 ,5132 7 -,040 ,0756 |

8 +,010 ,0734 | 6,25 ,6193 8 +,000 ,0756 \

9 -,060 ,0732 ] 6,92 , 6451 9 -,029 ,0756 1
10 -,087 ,0730 0 8,33 ,5962 10 -,089 ,0756 =
11 +,100 ,0728 0 10,22 ,5109 11 +,085 ,0756 0
12 +,016 ,0725 | 10,27 15927 12 +,020 ,0756 1
13 +,022 ,0723 | 10,36 ,6644 13 -,005 ,0756 |
14 -,043 ,0721 0 10,71 ,7085 14 -,045 ,0756 i
15 +,075 ,0719 D 11,81 , 6936 15 +,128 ,0756 l:l
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Figure 10: ACF and PACF graphs for the residuals of the ARIMA model (0,1,1)(2,0,0).

Source: author’s own work.

The distribution of residuals is closer to normal distribution (p-value=0.00029 in the
Shapiro-Wilk test), however, it still did not allow for the assumption of the HO null hypothesis
of normality of distribution at the level of significance 0=0.05a = 0.05 (Fig. 10).



64 Mieczystaw Pawlisiak

reszty modelu ARIMA (0,1,1)(2,0,0)

K-S d=,08346, p<,20 ; Lilliefors p=<,01 Wykres normalnosci: reszty modelu ARIMA (0,1,1)(2,0,0)
— Oczekiwana normalna 3

Liczba obs
Wartos¢ normalna

20 .
’_L. ¥‘ -3
0 = 20 80 40 0 10 80 120

-150 -100 -50 0 50 100 150 -100 -60 -20 20 60 100 140
X <= Granica klasy Wartose

Figure 11: Normality test of residuals of the ARIMA model (0,1,1)(2,0,0).

Source: author’s own work.

The non-normality of distribution was again influenced by high variability of empirical
data, resulting in overestimation of the forecast, as shown in Fig. 12. For the high season, the
average forecast error was 22 people, which is much higher and indicates a worse fit compared
to the previous model for the low season.
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Figure 12: Graph of empirical and projected values for the ARIMA model (0,1,1)(2,0,0).

Source: author’s own work.

However, it is best to assess the proposed models in real life conditions, verifying how they
managed to determine the potential number of swimming pool customers. For this purpose, the
recorded test observations from the first days of December, which were not included in the
construction of models, were used. The TableSpresents the actual observation value and the
forecast together with the relative error of the forecast.

Table 6: Comparison of forecast and test observations for December 2018

date observation no. | forecast | empirical data | relative error of the forecast w [%]
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date observation no. | forecast | empirical data | relative error of the forecast y [%]
2018-12-01 366 233.7795 224 4.37
12/2/2018 367 278.1835 271 265
12/3/2018 368 240.3599 233 3.16
12/4/2018 369 140.2660 150 6.49
12/5/2018 370 142.8584 133 7.41
12/6/2018 371 163.3989 158 3.42
12/7/2018 372 211.4756 200 5.74
12/8/2018 373 232.9656 223 447
12/9/2018 374 285.6192 270 578
12/10/2018 375 227.3252 222 2.40
12/11/2018 376 145.7672 150 282
12/12/2018 377 144.2306 147 1.88
12/13/2018 378 168.0041 165 1.82
12/14/2018 379 220.1948 210 4.85

Source: author’s own work.

The average forecast error is 4%, which is a very good result. However, most forecasts are
overestimated, which from the point of view of the swimming pool is a better result than the
opposite situation, as it is better to secure the level of safety of users by anticipating their larger
number, which will allow a certain reserve of readiness to be maintained. The graph of the
analyzed time series including test observations and forecasts is presented in Fig. 11.
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Figure 13: Graph of the examined series, test observations and forecasts.

Source: author’s own work.

The forecasts constructed in such a way allow determining the appropriate number of
lifeguards in relation to the users of the swimming pool and not its area. For example, they
make it possible to determine the number of permanent employees, which can be supplemented
by seasonal employees during periods of increased interest. Moreover, they make it possible to
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determine the necessary rescue equipment (lifebuoys, life jackets, medical equipment,
medicines and sanitary articles) not only in accordance with the law (Zurek, Ziotkowski,
Borucka, 2017), but in relation to the actual number of customers of the swimming pool.

Conclusions.

The article presents an example of a practical use of the ARIMA model for forecasting the
number of swimming pool users. Using the analysis of time series based on the dependence of
the examined feature (variable) on time, conclusions were formulated concerning the dynamics
of the studied phenomenon in the nearest future. Such forecasts may supplement the existing
legislation, which defines only minimum requirements for the safety of swimmers with regard
to the area of the pool and not the degree to which they are populated by swimmers. The
obtained forecast errors result in it being only able to play an advisory role, but the task of each
forecast is only to support management processes, and not to provide ready-made answers. In
addition, each of them requires constant monitoring and adaptation to changing circumstances.
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MODEL ARIMA W ZASTOSOWANIU DO ANALIZY POPYTU NA
USLUGI PLYWALNI

Streszczenie

Na preferencje klientow wybierajacych aktywna forme spedzania wolnego czasu wptywa
wiele czynnikow. Bogata oferta rynkowa daje szerokie mozliwosci, a od obiektow
sportowych wymaga sig¢, aby pozostawaly w pelnej gotowosci do §wiadczenia ustug.
Pomocne w takim przygotowaniu jest konstruowanie prognoz umozliwiajacych
okreslenie przewidywalnej liczby klientow. Przyktad takiej predykcji, sporzadzonej na
podstawie plywalni, przedstawiono w niniejszym artykule. W tym celu wykorzystano
model ARIMA bazujacy na zatozeniu, ze na warto$¢ zmiennej objasnianej wplywa
warto$¢ tej zmiennej opozniona w czasie.

Stowa kluczowe:model ARIMA, ratownictwo wodne, gotowos¢, plywalnia,
bezpieczenstwo

Klasyfikacja JEL: C2, C22.
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