Big data in supply chain management – a case study of a printing enterprise

Autor

  • Grzegorz Kruk Gdańsk Banking University

DOI:

https://doi.org/10.26881/ibage.2024.43.02

Słowa kluczowe:

big data, supply chain management, logistics, analysis

Abstrakt

The aim of the article is to identify the benefits of applying the concept of big data as a significant tool for managing and optimizing the supply chain and logistic processes to gain a competitive advantage in the printing industry. The article explains the concept of big data and presents its main characteristics. Subsequently, it highlights the areas of application of big data and provides examples of its usage in the supply chain of printing enterprises. Research indicates that big data analysis can significantly contribute to the development of the printing industry and the functioning of its supply chain links.

Downloads

Download data is not yet available.

Bibliografia

Alsolbi I., Shavaki F.H., Agarwal R., Bharathy G.K., Prakash S., Prasad S., 2023, Big data optimisation and management in supply chain management: A systematic literature review, Artificial Intelligence Review, no. 56.

Barbosa M.W., Vicente A.D., Ladeira M.B., Oliveira M.P., 2018, Managing supply chain resources with big data analytics: A systematic review, International Journal of Logistics Research and Applications, no. 3.

Dragun Ł., Kuczyńska K., 2023, Wykorzystanie potencjału Big Data jako narzędzia innowacyjnego w dziedzinie logistyki, Akademia Zarządzania, no. 3.

Dubey R., Altay N., Gunasekaran A., Blome C., Papadopoulos T., Childe S.J., 2018, Supply chain agility, adaptability and alignment: Empirical evidence from the Indian auto components industry, International Journal of Operations & Production Management, no. 1.

Feng Q., Shanthikumar J.G., 2018, How research in production and operations management may evolve in the era of big data, Production and Operations Management, no. 9.

Gupta S., Altay N., Luo Z., 2017, Big data in humanitarian supply chain management: A review and further research directions, Annals of Operations Research, no. 283.

Johnson L., Bohle A., 2019, Supply chain analytics implications for designing supply chain networks, Master’s thesis, Jönköping University.

Kaisler S., Espinosa J.A., Armour F., Money W.H., 2023, Big data and analytics: Issues and challenges for the past and next ten years [in:] Proceedings of the 56th Hawaii International Conference on System Sciences, University of Hawaii, Mānoa.

Kozłowska J., 2020, Metodyka analizy strategicznej przedsiębiorstwa na potrzeby integracji produktowo-usługowej, Oficyna wydawnicza Politechniki Białostockiej, Białystok.

Lamba K., Singh S.P., 2017, Big data in operations and supply chain management: Current trends and future perspectives, Production Planning and Control, nos. 11–12.

Labbi O., Ouzizi L., Douimi M., 2015, Simultaneous design of a product and its supply chain integrating reverse logistic operations: An optimization model, Xème Conférence Internationale: Conception et Production Intégrées, Tanger, Morocco.

Mishra D., Luo Z., Jiang S., Papadopoulos T., Dubey R., 2017, A bibliographic study on big data: Concepts, trends and challenges, Business Process Management Journal, no. 3.

Suh P.N., 2001, Axiomatic design: Advances and applications, Oxford University Press, New York.

Nguyen T., Li Z.H., Spiegler V., Ieromonachou P., Lin Y., 2018, Big data analytics in supply chain management: A state-of-the-art literature review, Computers and Operations Research, no. 98.

Nowakowska P., 2023, Nowe technologie w rozwoju i zarządzaniu przedsiębiorstwem, Zarządzanie Innowacyjne w Gospodarce i Biznesie, no. 1.

Prasad S., Zakaria R., Altay N., 2018, Big data in humanitarian supply chain networks: A resource dependence perspective, Annals of Operations Research, nos. 1–2.

Song M.L., Fisher R., Wang J.L., Cui L.B., 2018, Environmental performance evaluation with big data: Theories and methods, Annals of Operations Research, nos. 1–2.

Statista, n.d., Annual size of real time data in the global datasphere from 2010 to 2025, https:// www.statista.com/statistics/949144/worldwide-global-datasphere-real-time-data-annual-size [access: 2.01.2025].

Tamym L., Benyoucef L., Nait Sidi Moh A., Big data for supply chain management in industry 4.0 context: A comprehensive survey, 13th International Conference on Modeling, Optimization and Simulation – MOSIM.

Wamba S.F., Gunasekaran A., Papadopoulos T., Ngai E., 2018a, Big data analytics in logistics and supply chain management, The International Journal of Logistics Management, no. 2.

Wamba S.F., Gunasekaran A., Dubey R., Ngai E., 2018b, Big data analytics in operations and supply chain management, Annals of Operations Research, nos. 1–2.

Wang G., Gunasekaran A., Ngai E., 2018, Distribution network design with big data: Model and analysis, Annals of Operations Research, nos. 1–2.

Wyrembek M., 2022, Wykorzystanie technologii Big Data do predykcji ryzyka opóźnień w łańcuchu dostaw, Gospodarka Materiałowa i Logistyka, no. 6.

Zhao R., Liu Y., Zhang N., Huang T., 2017, An optimization model for green supply chain management by using a big data analytic approach, Journal of Cleaner Production, no. 142.

Opublikowane

2024-03-15

Jak cytować

Kruk, G. (2024). Big data in supply chain management – a case study of a printing enterprise. International Business and Global Economy, (43), 19–32. https://doi.org/10.26881/ibage.2024.43.02

Numer

Dział

Artykuły