What does external morphometry tell us about stock discrimination of Sardina pilchardus stocks from Türkiye?
DOI:
https://doi.org/10.26881/oahs-2024.3.08Keywords:
Sardina pilchardus, stock discrimination, morphometrics, multivariate analysis, TürkiyeAbstract
The analysis of shape is a fundamental part of much biological research. Morphometrics, which incorporates concepts from biology, geometry, and statistics, is the study of the geometrical form of organisms. In addition, morphometric characteristics can be used to differentiate ‘phenotypic stocks’ as groups with similar growth, mortality, and reproductive rates. In this study, 25 morphometric characters were used to discriminate European pilchard (Sardina pilchardus) stocks from Türkiye. Intraspecific variation of the European pilchard was investigated based on morphometric characters. Samples were collected from the Aegean Sea (AS; N = 54), the Sea of Marmara (MS; N = 50) and the Mediterranean Sea (MEDS; N = 50) during the 2019 fishing season. Principal Component Analysis (PCA) and Canonical Discriminant Analysis (CDA) were used for stock discrimination of the European pilchard. Univariate statistics (ANOVA) showed that 24 of the 25 measurements differed significantly between samples to a varying degree (p < 0.001). According to CDA, an overall classification success rate of 87.7% was achieved using 12 morphometric parameters. All samples were clearly separated from each other in the discriminant space, suggesting that there was no strong intermingling between populations. In addition, we would like to conclude that the morphological difference is not at the genetic level, and would like to emphasize the need for additional stock discrimination methods.
Downloads
References
Allendorf, E. W., Ryman, N., & Utter, E. M. (1987). Genetics and fishery management. In N. Ryman & F. Utter (Eds.), Population Genetics and Fishery Management (pp. 1–19). University of Washington.
Anderson, M. J. (2001). A new method for non‐parametric multivariate analysis of variance. Austral Ecology, 26, 32– 46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x.
Anonymous. (2022). Su Ürünleri, Ürün Raporu, http://arastırma.tarımorman.gov.tr/tepge (accessed 11 April 2023).
AnvariFar, H., Khyabani, A., Farahmand, H., Vatandoust, S., AnvariFar, H., & Jahageerdar, S. (2011). Detection of morphometric differentiation between isolated upand downstream populations of Siah Mahi (Capoeta capoeta gracilis)(Pisces: Cyprinidae) in the Tajan River (Iran). Hydrobiologia, 673, 41–52. https://doi.org/10.1007/ s10750-011-0748-7.
Atarhouch, T., Rüber, L., Gonzalez, E. G., Albert, E. M., Rami, M., Dakkak, A., & Zardoya, R. (2006). Signature of an early genetic bottleneck in a population of Moroccan sardines (Sardina pilchardus). Molecular Phylogenetics and Evolution, 39(2), 373–383. https://doi.org/10.1016/j.ympev.2005.08.003 PMID:16216537.
Baibai, T., Oukhattar, L., Quinteiro, J. V., Mesfioui, A., ReyMendez, M., & Soukri, A. (2012). First global approach: Morphological and biological variability in a genetically homogeneous population of the European pilchard, Sardina pilchardus (Walbaum, 1792) in the North Atlantic coast. Reviews in Fish Biology and Fisheries, 22, 63–80. https://doi.org/10.1007/s11160-011-9223-9.
Begg, G. A., & Waldman, J. R. (1999). An holistic approach to fish stock identification. Fisheries Research, 43(1-3), 35–44. https://doi.org/10.1016/S0165-7836(99)00065-X.
Bouton, N., De Visser, J., & Barel, C. D. N. (2002). Correlating head shape with ecological variables in rock dwelling haplochromines (Teleostei: Cichlidae) from Lake Victoria. Biological Journal of the Linnean Society. Linnean Society of London, 76(1), 39–48. https://doi.org/10.1111/j.1095-8312.2002.tb01712.x.
Caballero-Huertas, M., Frigola-Tepe, X., Coll, M., Muñoz, M., & Viñas, J. (2022). The current knowledge status of the genetic population structure of the European sardine (Sardina pilchardus): Uncertainties to be solved for an appropriate fishery management. Reviews in Fish Biology and Fisheries, 32(3), 745–763. https://doi.org/10.1007/ s11160-022-09704-z.
Cadrin, S. X. (2000). Advances in morphometric identification of fishery stocks. Reviews in Fish Biology and Fisheries, 10, 91–112. https://doi.org/10.1023/A:1008939104413.
Cadrin, S. X., & Friedland, K. D. (1999). The utility of image processing techniques for morphometric analysis and stock identification. Fisheries Research, 43(1-3), 129–139. https://doi.org/10.1016/S0165-7836(99)00070-3.
Cihangir, B. (1996). Reproduction of European Pilchard, Sardina pilchardus (Walbaum, 1792) in the Aegean Sea. Turkish Journal of Zoology, 20(1), 33–50. https://doi. org/10.55730/1300-0179.3036.
Clayton, J. W. (1981). The stock concept and the uncoupling of organismal and molecular evolution. Canadian Journal of Fisheries and Aquatic Sciences, 38, 1515–1522. https://doi.org/10.1139/f81-204.
Costalago, D., & Palomera, I. (2014). Feeding of European pilchard (Sardina pilchardus) in the northwestern Mediterranean: From late larvae to adults. Scientia Marina, 78(1), 41–54. https://doi.org/10.3989/scimar.03898.06D.
Dahel, A., Tahri, M., Bensouilah, M., Amara, R., & Djebar, B. (2016). Growth, age and reproduction of Sardinella aurita (Valenciennes, 1847) and Sardina pilchardus (Walbaum, 1792) in the Algerian eastern coasts. Aquaculture, Aquarium, Conservation & Legislation, 9(5), 1172–1181.
Elliot, N. G., Haskard, K., & Koslow, J. A. (1995). Morphometric analysis of the orange roughy (Hoplostethus atlanticus) of the continental slope of southern Australia. Journal of Fish Biology, 46, 202–220. https://doi.org/10.1111/j.1095-8649.1995.tb05962.x.
FAO. (1999). 1988-1997. Aquaculture Production Statistics. FAO Fisheries Circular, No: 815, Rev.11, Rome.
FAO. (2018). The State of Mediterranean and Black Sea Fisheries. General Fisheries Commission for the Mediterranean, 1-176.
FAO. (2019). Report of the FAO Working Group on the Assessment of Small Pelagic Fish Off Northwest Africa. Banjul. The Gambia, 26 June - 1 July 2018.
Garrido, S., Silva, A., Marques, V., Figueiredo, I., Bryère, P., Mangin, A., & Santos, A. M. (2017). Temperature and food-mediated variability of European Atlantic sardine recruitment. Progress in Oceanography, 159, 267–275. https://doi.org/10.1016/j.pocean.2017.10.006.
Garrido, S., Silva, A., Pastor, J., Dominguez, R., Silva, A. V., & Santos, A. M. (2015). Trophic ecology of pelagic fish species off the Iberian coast: Diet overlap, cannibalism and intraguild predation. Marine Ecology Progress Series, 539, 271–285. https://doi.org/10.3354/meps11506.
Gatz, A. J., Jr. (1979). Ecological morphology of freshwater stream fishes. Tulane Studies in Zoology and Botany, 21, 91–124.
Geladakis, G., Nikolioudakis, N., Koumoundouros, G., & Somarakis, S. (2018). Morphometric discrimination of pelagic fish stocks challenged by variation in body condition. ICES Journal of Marine Science, 75(2), 711–718. https://doi.org/10.1093/icesjms/fsx186.
Ghozzi, K., Dhiab, R. B., Challouf, R., & Bradai, M. N. (2022). Morphometric Variation among Four Local Ruditapes decussatus Populations in Monastir Bay (Eastern Coast, Tunisia). Braz. Arch. Biol. Technol. 65. https://doi.org/10.1590/1678-4324-2022210235.
Giannoulaki, M., Machias, A., & Tsimenides, N. (1999). Ambient luminance and vertical migration of the sardine Sardina pilchardus. Marine Ecology Progress Series, 178, 29–38. https://doi.org/10.3354/meps178029.
Gram, L., & Huss, H. H. (1996). Microbiological spoilage of fish and fish products. International Journal of Food Microbiology, 33(1), 121–137. https://doi. org/10.1016/0168-1605(96)01134-8 PMID:8913813.
Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeo. Elect., 4(1), 9pp.
Hanif, M. A., Siddik, M. A., Islam, M. A., Chaklader, M. R., & Nahar, A. (2019). Multivariate morphometric variability in sardine, Amblygaster clupeoides (Bleeker, 1849), from the Bay of Bengal coast, Bangladesh. Journal of Basic & Applied Zoology, 80(53), 1–10. https://doi.org/10.1186/s41936-019-0110-6.
Hutchings, J. A. (2000). Collapse and recovery of marine fishes. Nature, 406, 882–885. https://doi.org/10.1038/35022565 PMID:10972288.
ICES. (2018). Report of the Working Group on Southern Horse Mackerel, Anchovy and Sardine (WGHANSA). ICES C. 2018/ACOM17, 659 pp. https://doi.org/10.17895/ices. pub.18982720.v1.
IUCN. 2023. The IUCN Red List of Threatened Species. Version 2023-1. https://www.iucnredlist.org.
Ihssen, P. E., Booke, H. E., Casselman, J. M., McGlade, J. M., Payne, N. R., & Utter, F. M. (1981). Stock identification: Materials and methods. Canadian Journal of Fisheries and Aquatic Sciences, 38, 1838–1855. https://doi.org/10.1139/f81-230.
Jemaa, S., Bacha, M., Khalaf, G., Dessailly, D., Rabhi, K., & Amara, R. (2015). What can otolith shape analysis tell us about population structure of the European sardine, Sardina pilchardus, from Atlantic and Mediterranean waters? Journal of Sea Research, 96, 11–17. https://doi. org/10.1016/j.seares.2014.11.002.
Khan, M. A., Miyan, K., & Khan, S. (2013). Morphometric variation of snakehead fish, Channa punctatus, populations from three Indian rivers. Journal of Applied Ichthyology, 29, 637– 642. https://doi.org/10.1111/j.1439-0426.2012.02058.x.
Kottelat, M., & Freyhof, J. (2007). Handbook of European Freshwater Fishes. Cornol, Switzerland and Freyhof.
Labonne, M., Masski, H., Talba, S., Tai, I., Manchih, K., Chfiri, R., & Lae, R. (2022). Major population’s separation area for sardine (Sardina pilchardus) and hake (Merluccius merluccius) revealed using otolith geochemistry on the Atlantic coast of Morocco. Fisheries Research, 254, 106415. https://doi.org/10.1016/j.fishres.2022.106415.
Machado, A. M., Tørresen, O. K., Kabeya, N., Couto, A., Petersen, B., Felício, M., Campos, P. F., Fonseca, E., Bandarra, N., LopesMarques, M., Ferraz, R., Ruivo, R., Fonseca, M. M., Jentoft, S., Monroig, Ó., da Fonseca, R. R., & C Castro, L. F. (2018). “Out of the Can”: A draft genome assembly, liver transcriptome, and nutrigenomics of the European sardine, Sardina pilchardus. Genes, 9(10), 485. https://doi.org/10.3390/genes9100485 PMID:30304855.
Mahfuj, S., Islam, S. I., Jinia, S. S., Hossain, M. F., & Atique, U. (2023). Stock identification of Congaturi halfbeak (Hyporhamphus limbatus): Insight into conventional and truss-based morphometrics. Journal of Basic & Applied Zoology, 84(10), 1-13. https://doi.org/10.1186/s41936-023- 00329-7.
Meyer, A. (1987). Phenotypic plasticity and hetero- chrony in Cichlasoma managuense (Pisces, Cichlidae) and their implications for speciation in cichlid fishes. Evolution; International Journal of Organic Evolution, 41, 1357–1369. https://doi.org/10.1111/j.1558-5646.1987.tb02473.x PMID:28563603.
Mir, J. I., Sarkar, U. K., Dwivedi, A. K., Gusain, O. P., & Jena, J. K. (2013). Stock structure analysis of Labeo rohita (Hamilton, 1822) across the Ganga basin (India) using a truss network system. Journal of Applied Ichthyology, 29, 1097–1103. https://doi.org/10.1111/jai.12141.
Miyan, K., Khan, M. A., Patel, D. K., Khan, S., & Ansari, N. G. (2016). Truss morphometry and otolith microchemistry reveal stock discrimination in Clarias batrachus (Linnaeus, 1758) inhabiting the Gangetic river system. Fisheries Research, 173, 294–302. https://doi.org/10.1016/j.fishres.2015.10.024.
Mounir, A., Ewague, A., Znari, M., & Elmghazli, H. (2019). Discrimination of the phenotypic sardine Sardina pilchardus stocks off the Moroccan Atlantic coast using a morphometric analysis. African Journal of Marine Science, 41(2), 137–144. https://doi.org/10.2989/181423 2X.2019.1597765.
Moura, A., Muniz, A. A., Mullis, E., Wilson, J. M., Vieira, R. P., Almeida, A. A., Pinto, E., Brummer, G. J. A., Gaever, P. V., Gonçalves, J. M. S., & Correia, A. T. (2020). Population structure and dynamics of the Atlantic mackerel (Scomber scombrus) in the North Atlantic inferred from otolith chemical and shape signatures. Fisheries Research, 230, 105621. https://doi.org/10.1016/j.fishres.2020.10562.
Muniz, A. A., Moura, A., Triay-Portella, R., Moreira, C., Santos, P. T., & Correia, A. T. (2021). Population structure of the chub mackerel (Scomber colias) in the North-east Atlantic inferred from otolith shape and body morphometrics. Marine and Freshwater Research, 72(3), 341–352. https://doi.org/10.1071/MF19389.
Murta, A. G. (2000). Morphological variation of horse mackerel (Trachurus trachurus) in the Iberian and North African Atlantic: Implications for stock identification. ICES Journal of Marine Science, 57(4), 1240–1248. https://doi.org/10.1006/jmsc.2000.0810.
Mustać, B., & Sinovčić, G. (2010). Morphometric and meristic parameters of Sardine (Sardina pilchardus, Walbaum, 1792) in the Zadar fishing area. Ribarstvo, 68(1), 27–43.
Myers, R. A., & Worm, B. (2003). Rapid worldwide depletion of predatory fish communities. Nature, 423, 280–283. https://doi.org/10.1038/nature01610 PMID:12748640.
Khan, M. A., & Nazir, A. (2019). Stock delineation of the longwhiskered catfish, Sperata aor (Hamilton 1822), from River Ganga by using morphometrics. Marine and Freshwater Research, 70(1), 107–113. https://doi.org/10.1071/ MF17306.
Neves, J., Silva, A. A., Moreno, A., Veríssimo, A., Santos, A. M., & Garrido, S. (2021). Population structure of the European sardine Sardina pilchardus from Atlantic and Mediterranean waters based on otolith shape analysis. Fisheries Research, 243, 106050. https://doi.org/10.1016/j.fishres.2021.106050.
Neves, J., Veríssimo, A., Múrias Santos, A., & Garrido, S. (2023). Comparing otolith shape descriptors for population structure inferences in a small pelagic fish, the European sardine Sardina pilchardus (Walbaum, 1792). Journal of Fish Biology, 102, 1219–1236. Advance online publication. https://doi.org/10.1111/jfb.15369 PMID:36880257.
Özpiçak, M., & Polat, N. (2019). Morphological comparison of six coastal stream populations of crimean barbel (Barbus tauricus Kessler, 1877) from the southern Black Sea basin. Turkish Journal Fisheries and Aquatic Science, 19, 485-494. https://doi.org/10.4194/1303-2712-v19_6_04.
Parrish, R., Serra, R., & Grant, W. (1989). Themonotypic sardines, Sardina and Sardinops: Their taxonomy, distribution, stock structure, and zoogeography. Canadian Journal of Fisheries and Aquatic Sciences, 46(11), 2019–2036. https://doi.org/10.1139/f89-251.
Pauly, D., Alder, J., Bennett, E., Christensen, V., Tyedmers, P., & Watson, R. (2003). The future for fisheries. Science, 302(5649), 1359–1361. https://doi.org/10.1126/ science.1088667 PMID:14631031.
Pawson, M. G., & Jennings, S. (1996). A critique of methods for stock identification in marine capture fisheries. Fisheries Research, 25(3-4), 203–217. https://doi.org/10.1016/0165-7836(95)00441-6.
Pinheiro, A., Teixeira, C. M., Rego, A. L., Marques, J. F., & Cabral, H. N. (2005). Genetic and morphological variation of Solea lascaris (Risso, 1810) along the Portuguese coast. Fisheries Research, 73(1-2), 67–78. https://doi.org/10.1016/j.fishres.2005.01.004.
Reis-Santos, P., Tanner, S. E., França, S., Vasconcelos, R. P., Gillanders, B. M., & Cabral, H. N. (2015). Connectivity within estuaries: An otolith chemistry and muscle stable isotope approach. Ocean and Coastal Management, 118, 51–59. https://doi.org/10.1016/j.ocecoaman.2015.04.012.
Robinson, B. W., & Wilson, D. S. (1996). Genetic variation and phenotypic plasticity in a trophically polymorphic population of pumpkinseed sunfish (Lepomis gibbosus). Evolutionary Ecology, 10, 631–652. https://doi.org/10.1007/BF01237711.
Sajina, A. M., Chakraborty, S. K., Jaiswar, A. K., Pazhayamadam, D. G., & Sudheesan, D. (2011). Stock structure analysis of Megalaspis cordyla (Linnaeus, 1758) along the Indian coast based on truss network analysis. Fisheries Research, 108(1), 100–105. https://doi.org/10.1016/j.fishres.2010.12.006.
Santos, A. M. P., Nieblas, A. E., Verley, P., Teles-Machado, A., Bonhommeau, S., Lett, C., Garrido, S., & Peliz, A. (2018). Sardine (Sardina pilchardus) larval dispersal in the Iberian upwelling system, using coupled biophysical techniques. Progress in Oceanography, 162, 83–97. https://doi.org/10.1016/j.pocean.2018.02.011.
Sarmaşik, A., Çolakoğlu, F. A., & Altun, T. (2008). Mitochondrial DNA sequence and body size variations in Turkish sardine (Sardina pilchardus) stocks. Turkish Journal of Zoology, 32(3), 229–237.
Siddik, M. A. B., Hanif, M. A., Chaklader, M. R., Nahar, A., & Fotedar, R. (2016). A multivariate morphometric investigation to delineate stock structure of gangetic whiting, Sillaginopsis panijus (Teleostei: Sillaginidae). SpringerPlus, 5, 520. https://doi.org/10.1186/s40064-016-2143-3 PMID:27186484.
Silva, A. (2003). Morphometric variation among sardine (Sardina pilchardus) populations from the northeastern Atlantic and the western Mediterranean. ICES Journal of Marine Science, 60(6), 1352–1360. https://doi.org/10.1016/S1054-3139(03)00141-3.
Silva, A., Carrera, P., Massé, J., Uriarte, A., Santos, M. B., Oliveira, P. B., Soares, E., Porteiro, C., & Stratoudakis, Y. (2008). Geographic variability of sardine growth across the northeastern Atlantic and the Mediterranean Sea. Fisheries Research, 90, 56–69. Advance online publication. https://doi.org/10.1016/j.fishres.2007.09.011.
Silva, A., Garrido, S., Ibaibarriaga, L., Pawlowski, L., Riveiro, I., Marques, V., Ramos, F., Duhamel, E., Iglesias, M., Bryère, P., Mangin, A., Citores, L., Carrera, P., & Uriarte, A. (2019). Adult-mediated connectivity and spatial population structure of sardine in the Bay of Biscay and Iberian coast. Deep-sea Research. Part II, Topical Studies in Oceanography, 159, 62–74.
Silva, A., Kasapidis, P., Laurent, V., Caneco, B., Planes, S., & Magoulas, A. (2012). Integrating genetic and morphometric variation in sardine, Sardina pilchardus (Walbaum, 1792) from the northeastern Atlantic and the Mediterranean Sea. In S. Garcia, M. Tandstad, & A. M. Caramelo (Eds.), Science and Management of Small Pelagics. FAO Fisheries.
Smith, G. R. (1990). Homology in morphometries and phylogeneties, in: Rohlf, F.J., Bookstein, F.L. (Eds.), Proceedings of the Michigan Morphometrics Workshop. Special Publication Number 2, The University of Michigan Museum of Zoology, ABD, pp. 325-338.
Stambler, N. (2014). The Mediterranean Sea–Primary productivity. In D. Goffredo & Z. Dubinsk (Eds.), The Mediterranean Sea: Its history and present challenges (pp. 113–121). Springer. https://doi.org/10.1007/978-94-007-6704-1_7.
Stearns, S. C. (1983). The evolution of life-history traits in mosquitonsh since their introduction to Hawaii in 1905: Rates of evolution, heritabilities, and developmental plasticity. American Zoologist, 23, 65–75. https://doi.org/10.1093/icb/23.1.65.
Swain, D. P., & Foote, C. J. (1999). Stocks and chameleons: the use of phenotypic variation in stock identification. Fisheries Research, 43, 113e128. https://doi.org/10.1016/ S0165-7836(99)00069-7.
Tinti, F., Di Nunno, C., Guarniero, I., Talenti, M., Tommasini, S., Fabbri, E., & Piccinetti, C. (2002). Mitochondrial DNA sequence variation suggests the lack of genetic heterogeneity in the Adriatic and Ionian stocks of Sardina pilchardus. Marine Biotechnology (New York, N.Y.), 4, 163–172. https://doi.org/10.1007/s10126-002-0003-3 PMID:14961276.
Turan, C., Oral, M., Öztürk, B., & Düzgüneş, E. (2006). Morphometric and meristic variation between stocks of Bluefish (Pomatomus saltatrix) in the Black, Marmara, Aegean and northeastern Mediterranean Seas. Fisheries Research, 79(1-2), 139–147. https://doi.org/10.1016/j.fishres.2006.01.015.
Turan, C., Erguden, D., Turan, F., & Gurlek, M. (2004). Genetic andmorphologic structure of Liza abu (Heckel, 1843) popu-lations from the rivers Orontes, Euphrates and Tigris. Turkish Journal of Veterinary and Animal Sciences, (28), 729–734.
Vasconcelos, J., Vieira, A. R., Sequeira, V., González, J. A., Kaufmann, M., & Gordo, L. S. (2018). Identifying populations of the blue jack mackerel (Trachurus picturatus) in the Northeast Atlantic by using geometric morphometrics and otolith shape analysis. Fishery Bulletin (Washington, D.C.), 116(1), 81–92. https://doi.org/10.7755/FB.116.1.9.
Vatandoust, S., Mousavi-Sabet, H., Razeghi-Mansour, M., AnvariFar, H., & Heidari, A. (2015). Morphometric variation of the endangered Caspian lamprey, Caspiomyzon wagneri (Pisces: Petromyzontidae), from migrating stocks of two rivers along the southern Caspian Sea. Zoological Studies (Taipei, Taiwan), 54, e56. https://doi.org/10.1186/s40555- 015-0133-8 PMID:31966143.
Wessels, G., Moloney, C. L., & van der Lingen, C. D. (2010). The effects of freezing on the morphometrics of sardine Sardinops sagax (Jenyns, 1842). Fisheries Research, 106(3), 528–534. https://doi.org/10.1016/j.fishres.2010.10.004.
Williams, J. G. (2003). Sardine fishing in the early 20th century. Science, 300(5628), 2032–2033. https://doi.org/10.1126/science.300.5628.2032 PMID:12829766.
Wimberger, P. H. (1992). Plasticity of fish body shape. The effects of diet, development, family and age in two species of Geophagus (Pisces: Cichlidae). Biological Journal of the Linnean Society. Linnean Society of London, 45(3), 197–218. https://doi.org/10.1111/j.1095-8312.1992.tb00640.x.