Lipid content and wastewater treatment potential of Chlorella vulgaris and Scenedesmus obliquus isolated from Uzuncayır Dam Lake
DOI:
https://doi.org/10.26881/oahs-2024.3.09Keywords:
Chlorella vulgaris, Scenedesmus obliquus, wastewater treatment, lipid, fatty acidsAbstract
Production of microalgae for biodiesel, one of the alternative renewable energy sources, is costly due to nutrient media. Industrial and domestic wastewater contains nitrogen, phosphorus and other nutrients that are the primary food source for algae. Releasing this environmentally harmful effluent into receiving bodies of water, such as the sea or a freshwater reservoir, without prior treatment causes serious problems. Combining microalgae cultivation with wastewater treatment is a promising strategy for improving wastewater and reducing the cost of nutrient media required for algae production. In this study, wastewater obtained from a wastewater treatment facility was diluted with clean water to 0.25%, 50%, and 75% concentrations, and Chlorella vulgaris and Scenedesmus obliquus were cultured in these nutrient media for 20 days. As a result, microalgae increased their biomass and lipid content, while consuming nitrite, nitrate, phosphate, and ammonium from the wastewater as nutrients.
Downloads
References
Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. B. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257–275. https://doi. org/10.1016/j.sjbs.2012.04.005 PMID:24936135.
Aburai, N., Kunishima, R., Iijima, F., & Fujii, K. (2020). Effects of light-emitting diodes (LEDs) on lipid production of the aerial microalga Coccomyxa sp. KGU-D001 under liquid- and aerial-phase conditions. Biotechnology Journal, 323(2020), 274–282. https://doi.org/10.1016/j.jbiotec.2020.09.005 PMID:32916185.
Adalioğlu, S., & Caliskan, G. (2020). Effect of Nutrient, Light Intensity and Temperature on the Growth Rates and Metabolism of a Stress-Resistant Bacillariophyta– Entomoneis sp.-in Izmir Bay (Aegean Sea). Mediterranean Marine Science, 21(1), 1–10. https://doi.org/10.12681/mms.19439.
Ahmad, F. A. U. K. Y., Khan, A. U., & Yasar, A. (2013). The potential of Chlorella vulgaris for wastewater treatment and biodiesel production. Pak. J. Bot, 45(S1), 461-465. https://www.pakbs.org/pjbot/PDFs/45(S1)/61.pdf. 06.27.2022.
Ahmed Al Darmaki, L. G., Talebi, S., Al-Rajhi, S., & Tahir AlBarwani, Z. A. (2012). Cultivation and characterization of microalgae for wastewater treatment. Proc World Congr Eng 1, 4-7.
Barsanti, L., & Gualtieri, P. (2022). Algae: anatomy, biochemistry, and biotechnology. 2nd Edition. London, Taylor & Francis Group, CRC press. https://doi.org/10.1201/b16544.
Bischoff, H. W., & Bold, H. C. 1963. Phycological Studies IV. Some Soil Algae from Enchanted Rock and Related Algal Species. University of Texas Publication No. 6318, 95 Austin, Texas.
Bold, H. C. 1942. The cultivation of algae. The Botanical Review, 8(2), 69-138. https://doi.org/10.1007/BF02879474.
Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., & Wijffels, R. H. (2013). Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus. Bioresource Technology, 143(2013), 1–9. https://doi.org/10.1016/j.biortech.2013.05.105 PMID:23774290.
Chai, W. S., Chew, C. H., Munawaroh, H. S. H., Ashokkumar, V., Cheng, C. K., Park, Y. K., & Show, P. L. (2021). Microalgae and ammonia: A review on inter-relationship. Fuel, 303(2021), 121303. https://doi.org/10.1016/j.fuel.2021.121303.
Chen, Z., Gong, Y., Fang, X., & Hu, H. (2012). Scenedesmus sp. NJ-1 isolated from Antarctica: A suitable renewable lipid source for biodiesel production. World Journal of Microbiology & Biotechnology, 28(11), 3219–3225. https://doi.org/10.1007/s11274-012-1132-0 PMID:22851191.
Choi, H. J. (2016). Dairy wastewater treatment using microalgae for potential biodiesel application. Environmental Engineering Research, 21(4), 393–400. https://doi. org/10.4491/eer.2015.151.
Chuck, C. J., Bannister, C. D., Hawley, J. G., Davidson, M. G., La Bruna, I., & Paine, A. (2009). Predictive model to assess the molecular structure of biodiesel fuel. Energy & Fuels, 23(4), 2290–2294. https://doi.org/10.1021/ef801085s.
Courchesne, N. M. D., Parisien, A., Wang, B., & Lan, C. Q. (2009). Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. Biotechnology Journal, 141(1-2), 31–41. https://doi.org/10.1016/j.jbiotec.2009.02.018 PMID:19428728.
Darki, B. Z., Seyfabadi, J., & Fayazi, S. (2017). Effect of nutrients on total lipid content and fatty acids profile of Scenedesmus obliquus. Braz Arch Biol Technol 60. https://doi.org/10.1590/1678-4324-2017160304.
El-Kassas, H. Y. (2013). Growth and fatty acid profile of the marine microalga Picochlorum sp. grown under nutrient stress conditions. Egyptian Journal of Aquatic Research, 39(4), 233–239. https://doi.org/10.1016/j.ejar.2013.12.007.
Eltem, R. (2001). Wastewaters and Treatment, Ege University Faculty of Science Publications (Atıksular ve arıtım. Ege Üniversitesi Fen Fakültesi Yayınları), 172.
Fadeyi, O., Dzantor, K., & Adeleke, E. (2016). Assessment of biomass productivities of Chlorella vulgaris and Scenedesmus obliquus in defined media and municipal wastewater at varying concentration of nitrogen. Journal of Water Resource and Protection, 8(2), 217–225. https://doi.org/10.4236/jwarp.2016.82018.
Fernandez-Marchante, C. M., Asensio, Y., Lobato, J., Villaseñor, J., Cañizares, P., & Rodrigo, M. A. (2018). Influence of hydraulic retention time and carbon loading rate on the production of algae. Biotechnology Journal, 282(2018), 70–79. https://doi.org/10.1016/j.jbiotec.2018.07.012 PMID:29990569.
Franchino, M., Comino, E., Bona, F., & Riggio, V. A. (2013). Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere, 92(6), 738– 744. https://doi.org/10.1016/j.chemosphere.2013.04.023 PMID:23706373.
Griffiths, M. J., & Harrison, S. T. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21(5), 493–507. https://doi.org/10.1007/s10811-008-9392-7.
Hadrich, B., Akremi, I., Dammak, M., Barkallah, M., Fendri, I., & Abdelkafi, S. (2018). Optimization of lipids’ ultrasonic extraction and production from Chlorella sp. using response-surface methodology. Lipids in Health and Disease, 17(1), 87. https://doi.org/10.1186/s12944-018-0702-z PMID:29665818.
Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. The Plant Journal, 54(4), 621–639. https://doi.org/10.1111/j.1365-313X.2008.03492.x PMID:18476868.
Jiang, X., Hu, Y., Bedell, J. H., Xie, D., & Wright, A. L. (2011). Soil organic carbon and nutrient content in aggregate‐size fractions of a subtropical rice soil under variable tillage. Soil Use and Management, 27(1), 28–35. https://doi.org/10.1111/j.1475-2743.2010.00308.x.
Juneja, A., Ceballos, R. M., & Murthy, G. S. (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review. Energies, 6(9), 4607–4638. https://doi.org/10.3390/en6094607.
Karimi-Maleh, H., Shafieizadeh, M., Taher, M. A., Opoku, F., Kiarii, E. M., Govender, P. P., Ranjbari, S., Rezapour, M., & Orooji, Y. (2020). The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. Journal of Molecular Liquids, 298, 112040. https://doi.org/10.1016/j.molliq.2019.112040.
Khaldi, H., Maatoug, M., Dube, C. S., Ncube, M., Tandlich, R., Heilmeier, H.,Laubscher, R.K., Dellal, A. (2017). Efficiency of wastewater treatment by a mixture of sludge and microalgae. Int j fundam appl sci 9(3), 1454-1472. https:// doi.org/10.4314/jfas.v9i3.13.
Komarek, J., & Fott, B. (1983). Chlorophyceae (Grunalgen) ordnung: Chlorococcales. In G. Huber-Pestalozzi (Ed.), Das Phytoplankton des Suswassers. Komarek, J., & Ruzicka, J. (1969). Effect of temperature on the growth and variability of Scenedesmus quadricauda (Turp.) Breb. In B. Fott (Ed.), Studies in Phycology. Academia, Pregue, (pp. 262–292).
Lee, S. J., Yoon, B. D., & Oh, H. M. (1998). Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnology Techniques, 12(7), 553–556. https://doi.org/10.1023/A:1008811716448.
Martínez, M. E., Sánchez, S., Jimenez, J. M., El Yousfi, F., & Munoz, L. (2000). Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technology, 73(3), 263–272. https://doi.org/10.1016/S0960-8524(99)00121-2.
Min, M., Wang, L., Li, Y., Mohr, M. J., Hu, B., Zhou, W., Chen, P., & Ruan, R. (2011). Cultivating Chlorella sp. in a pilotscale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Biotechnology and Applied Biochemistry, 165(1), 123–137. https://doi.org/10.1007/s12010-011-9238-7 PMID:21494756.
Nomura, M., Kamogawa, H., Susanto, E., Kawagoe, C., Yasui, H., Saga, N., Hosokawa, M., & Miyashita, K. (2013). Seasonal variations of total lipids, fatty acid composition, and fucoxanthin contents of Sargassum horneri (Turner) and Cystoseira hakodatensis (Yendo) from the northern seashore of Japan. Journal of Applied Phycology, 25(4), 1159–1169. https://doi.org/10.1007/s10811-012-9934-x.
Palmer, C. M. (1969). A composite rating of algae tolerating organic pollution2 . Journal of Phycology, 5(1), 78–82. https://doi.org/10.1111/j.1529-8817.1969.tb02581.x PMID:27097257.
Passos, F., & Ferrer, I. (2014). Microalgae conversion to biogas: Thermal pretreatment contribution on net energy production. Environmental Science & Technology, 48(12), 7171–7178. https://doi.org/10.1021/es500982v PMID:24825469.
Passos, F., García, J., & Ferrer, I. (2013). Impact of low temperature pretreatment on the anaerobic digestion of microalgal biomass. Bioresource Technology, 138(2013), 79–86. https://doi.org/10.1016/j.biortech.2013.03.114 PMID:23619135.
Pradhan, D., Sukla, L. B., Mishra, B. B., & Devi, N. (2019). Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. Journal of Cleaner Production, 209(2019), 617–629. https://doi.org/10.1016/j.jclepro.2018.10.288.
Qu, F., Jin, W., Zhou, X., Wang, M., Chen, C., Tu, R., Han, S. F., He, Z., & Li, S. F. (2020). Nitrogen ion beam implantation for enhanced lipid accumulation of Scenedesmus obliquus in municipal wastewater. Biomass and Bioenergy, 134(2020), 105483. https://doi.org/10.1016/j.biombioe.2020.105483.
Satpal, K. A., & Khambete, A. K. (2016). Waste water treatment using micro-algae—A review paper. Int J Eng Technol Manag Appl Sci (Conference: IJETMAS), 4(2), 188–192.
Scarponi, P., Volpi Ghirardini, A. M., Bravi, M., & Cavinato, C. (2021). Evaluation of Chlorella vulgaris and Scenedesmus obliquus growth on pretreated organic solid waste digestate. Waste Management (New York, N.Y.), 119(2021), 235–241. https://doi.org/10.1016/j.wasman.2020.09.047 PMID:33075620.
Schnurr, P. J., & Allen, D. G. (2015). Factors affecting algae biofilm growth and lipid production: A review. Renewable & Sustainable Energy Reviews, 52(2015), 418–429. https://doi.org/10.1016/j.rser.2015.07.090.
Sekaran, G., Karthikeyan, S., Nagalakshmi, C., & Mandal, A. B. (2013). Integrated Bacillus sp. immobilized cell reactor and Synechocystis sp. algal reactor for the treatment of tannery wastewater. Environmental Science and Pollution Research International, 20(1), 281–291. https://doi.org/10.1007/s11356-012-0891-3 PMID:22528997.
Sen, B., Alp, M.T., Sonmez, F., Kocer, M.A.T., & Canpolat, O. (2013). Relationship of algae to water pollution and waste water treatment. Water treatment, 335-354. https://doi. org/10.5772/51927.
Seyhaneyıldız Can, Ş., Demir, V., & Can, E. (2015). Evaluating the dilution of municipal wastewater on biomass increase, lipid production and nutrient removal by the blue-green algae Spirulina platensis (Geitler). Fresenius Environmental Bulletin, 24(3), 904–909.
Seyhaneyıldız Can, Ş., Koru, E., Cirik, S., Turan, G., Tekoğul, H., & Subakan, T. (2021). Effects of Temperature and Nitrogen Concentration on Growth and Lipid Accumulation of the Green Algae Chlorella vulgaris for Biodiesel. Acta Nat Sci, 2(2), 101–108. https://doi.org/10.29329/actanatsci.2021.350.03.
Shanmugam, S., Mathimani, T., Anto, S., Sudhakar, M. P., Kumar, S. S., & Pugazhendhi, A. (2020). Cell density, Lipidomic profile, and fatty acid characterization as selection criteria in bioprospecting of microalgae and cyanobacterium for biodiesel production. Bioresource Technology, 304(2020), 123061. https://doi.org/10.1016/j.biortech.2020.123061 PMID:32127245.
Soeder, C. J., & Hegewald, E. (1989). Scenedesmus. In M. A. Borowitzka & L. J. Borowitzka (Eds.), Microalgal Biotechnology (pp. 59–84). Cambridge University Press.
Starr, R. C., & Zeikus, J. A. (1993). UTEX—The culture collection of algae at the University of Texas at Austin 1993 List of cultures 1. Journal of Phycology, 29(s2), 90-95. https://doi.org/10.1111/j.0022-3646.1993.00001.x.
Tedesco, M. A., & Duerr, E. O. (1989). Light, temperature and nitrogen starvation effects on the total lipid and fatty acid content and composition of Spirulina platensis UTEX 1928. Journal of Applied Phycology, 1(3), 201–209. https://doi.org/10.1007/BF00003646.
Telci, I., Sahin-Yaglioglu, A., Eser, F., Aksit, H., Demirtas, I., & Tekin, S. (2014). Comparison of seed oil composition of Nigella sativa L. and N. damascena L. during seed maturation stages. Journal of the American Oil Chemists’. Journal of the American Oil Chemists’ Society, 91(10), 1723– 1729. https://doi.org/10.1007/s11746-014-2513-3.
Ullah, M. R., Akhter, M., Khan, A. B. S., Hasan, M. M., Bosu, A., Yasmin, F., Haque, M. A., Islam M. A., Mahmud, Y. (2023). Seaweed: A prominent source of protein and other nutrients. Sustainable Aquatic Research, 2(2), 145–166. https://doi.org/10.5281/zenodo.8302372.
Villar-Navarro, E., Baena-Nogueras, R. M., Paniw, M., Perales, J. A., & Lara-Martín, P. A. (2018). Removal of pharmaceuticals in urban wastewater: High rate algae pond (HRAP) based technologies as an alternative to activated sludge based processes. Water Research, 139(2018), 19–29. https://doi.org/10.1016/j.watres.2018.03.072.
Yadav, G., Shanmugam, S., Sivaramakrishnan, R., Kumar, D., Mathimani, T., Brindhadevi, K., Pugazhendhi, A., & Rajendran, K. (2021). Mechanism and challenges behind algae as a wastewater treatment choice for bioenergy production and beyond. Fuel, 285(2021), 119093. https://doi.org/10.1016/j.fuel.2020.119093.
Ye, S., Gao, L., Zhao, J., An, M., Wu, H., & Li, M. (2020). Simultaneous wastewater treatment and lipid production by Scenedesmus sp. HXY2. Bioresource Technology, 302(2020), 122903. https://doi.org/10.1016/j.biortech.2020.122903 PMID:32018084.
Zhila, N. O., Kalacheva, G. S., & Volova, T. G. (2011). Effect of salinity on the biochemical composition of the alga Botryococcus braunii Kütz IPPAS H-252. Journal of Applied Phycology, 23(1), 47–52. https://doi.org/10.1007/s10811-010-9532-8.
Zhou, W., Wang, Z., Xu, J., & Ma, L. (2018). Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry towards bioenergy. Journal of Bioscience and Bioengineering, 126(5), 644–648. https://doi.org/10.1016/j.jbiosc.2018.05.006.