Environmental impact of potentially toxic elements accumulated in surface sediments of the Erikli Lagoon, Black Sea coast (Türkiye)

Authors

  • Serkan Kükrer İzmir Katip Çelebi University
  • Musa Uludağ Trakya University
  • Gülsen Erginal Çanakkale Onsekiz Mart University
  • Ahmet Evren Erginal Çanakkale Onsekiz Mart University

DOI:

https://doi.org/10.26881/oahs-2024.3.10

Keywords:

metal contamination, risk assessment, sediment quality, ecotoxicological indices, Erikli Lagoon

Abstract

This study aims to (a) determine the concentration and distribution of elements in the surface sediments of the Erikli Lagoon, which are under natural and anthropogenic pressure, (b) determine possible effects on the environment using ecological indices, and (c) reveal possible sources. Multiple elements, total organic carbon and chlorophyll degradation products were analyzed in sediment samples. Enrichment factor (EF), contamination factor (CF), and geoaccumulation index (Igeo) were calculated to determine the sources of the elements. Modified hazard quotient (mHQ), ecological contamination index (ECI), contamination severity index (CSI) and potential ecological risk index (PERI) were calculated to determine ecological risks. It was found that Mn, Hg, As, Fe and Cd entering the lake are of anthropogenic origin. These elements pose a low to moderate ecological threat to the lake. Agricultural and domestic discharges and atmospheric deposition are the main sources of these elements. A moderate ecological risk with an average value of 194.89 was determined in the lagoon based on PERI and contamination levels of metals. The elements that pose this risk are Hg and Cd, due to their high toxicity. According to ECI and CSI, the ecological risk is low, with average values of 0.99 and 0.30, respectively.

Downloads

Download data is not yet available.

References

Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136(1- 3), 227–238. https://doi.org/10.1007/s10661-007-9678-2 PMID:17370131.

Aydın, H., Tepe, Y., & Ustaoğlu, F. (2023). A holistic approach to the eco-geochemical risk assessment of trace elements in the estuarine sediments of the Southeastern Black Sea. Marine Pollution Bulletin, 189, 114732. https://doi.org/10.1016/j.marpolbul.2023.114732 PMID:36841212.

Aykir, D., Fural, Ş., Kükrer, S., & Mutlu, Y. E. (2023). Elementbased ecological and human health risk assessment in a lagoon system in a densely populated basin. Oceanological and Hydrobiological Studies, 52(1), 1–19. https://doi.org/10.26881/oahs-2023.1.01.

Bai, J., Cui, B., Chen, B., Zhang, K., Deng, W., Gao, H., & Xiao, R. (2011). Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecological Modelling, 222(2), 301–306. https://doi.org/10.1016/j.ecolmodel.2009.12.002.

Bai, J., Jia, J., Zhang, G., Zhao, Q., Lu, Q., Cui, B., & Liu, X. (2016). Spatial and temporal dynamics of heavy metal pollution and source identification in sediment cores from the short-term flooding riparian wetlands in a Chinese delta. Environmental Pollution, 219, 379–388. https://doi.org/10.1016/j.envpol.2016.05.016 PMID:27209339.

Benson, N. U., Adedapo, A. E., Fred-Ahmadu, O. H., Williams, A. B., Udosen, E. D., Ayejuyo, O. O., & Olajire, A. A. (2018). New ecological risk indices for evaluating heavy metals contamination in aquatic sediment: A case study of the Gulf of Guinea. Regional Studies in Marine Science, 18, 44– 56. https://doi.org/10.1016/j.rsma.2018.01.004.

Berg, T., & Steinnes, E. (2005). Atmospheric transport of Metals. In Metal Ions in Biological Systems (Ed. Astrid Sigel, Helmut Sigel, Roland K. O. Sigel) (p. 1-21 ). Taylor & Francis Group. https://doi.org/10.1201/9780849346071-1.

Botello, A. V., Villanueva, F. S., Rivera, R. F., Velandia, A. L., & de la Lanza, G. E. (2018). Analysis and Tendencies of Metals and POPs in a Sediment Core from the Alvarado Lagoon System (ALS), Veracruz, Mexico. Archives of Environmental Contamination and Toxicology, 75(1), 157–173. https://doi.org/10.1007/s00244-018-0516-z PMID:29511815.

Boudissa, S. M., Lambert, J., Müller, C., Kennedy, G., Gareau, L., & Zayed, J. (2006). Manganese concentrations in the soil and air in the vicinity of a closed manganese alloy production plant. The Science of the Total Environment, 361(1-3), 67–72. https://doi.org/10.1016/j.scitotenv.2005.05.001 PMID:15972228.

Brady, J. P., Ayoko, G. A., Martens, W. N., & Goonetilleke, A. (2015). Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environmental Monitoring and Assessment, 187(5), 306. https://doi.org/10.1007/s10661-015-4563-x PMID:25925159.

Çağlayan, M. A., & Yurtsever, A. (1998). 1/100 000 scale geological map of Turkey: Burgaz A3, B2 and B3 Edirne, Burgaz A4, Kırklareli B4, B5, and B6, Kırklareli 6 Dies «, Geological Studies Department of MTA General Directorate. MTA General Directorate.

Çaldirak, H., Kurtulus, B., Canoglu, M., & Tunca, E. (2017). Assessment of heavy metal contamination and accumulation patterns in the coastal and deep sediments of Lake Salda, Turkey. Fresenius Environmental Bulletin, 26(12A), 8047–8061.

Çevik, F., Göksu, M. Z. L., Derici, O. B., & Findik, O. (2009). An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environmental Monitoring and Assessment, 152(1-4), 309–317. https://doi.org/10.1007/s10661-008-0317-3 PMID:18478346.

Chapman, P. M., Wang, F., Janssen, C. R., Goulet, R. R., & Kamunde, C. N. (2003). Conducting Ecological Risk Assessments of Inorganic Metals and Metalloids: Current Status. Human and Ecological Risk Assessment, 9(4), 641– 697. https://doi.org/10.1080/713610004.

Doolittle, H. A., Norton, S. A., Bacon, L. C., Ewing, H. A., & Amirbahman, A. (2018). The internal and watershed controls on hypolimnetic sediment phosphorus release in Lake Auburn, Maine, USA. Lake and Reservoir Management, 34(3), 258–269. https://doi.org/10.1080/10402381.2018.1 423588.

Fernandes, C., Fontaínhas-Fernandes, A., Cabral, D., & Salgado, M. A. (2008). Heavy metals in water, sediment and tissues of Liza saliens from Esmoriz-Paramos lagoon, Portugal. Environmental Monitoring and Assessment, 136(1-3), 267–275. https://doi.org/10.1007/s10661-007-9682-6 PMID:17447151.

Fural, Ş., Kükrer, S., Cürebal, İ., & Aykır, D. (2021). Spatial distribution, environmental risk assessment, and source identification of potentially toxic metals in Atikhisar dam, Turkey. Environmental Monitoring and Assessment, 193(5), 268. https://doi.org/10.1007/s10661-021-09062-6 PMID:33860380.

Gascón Díez, E., Corella, J. P., Adatte, T., Thevenon, F., & Loizeau, J.-L. (2017). High-resolution reconstruction of the 20th century history of trace metals, major elements, and organic matter in sediments in a contaminated area of Lake Geneva, Switzerland. Applied Geochemistry, 78, 1–11. https://doi.org/10.1016/j.apgeochem.2016.12.007.

Gaudette, H. E., Flight, W. R., Toner, L., Folger, D. W., & the Henri E. Gaudette, Wilson R. Flight. (1974). An inexpensive titration method for the determination of organic carbon in recent sediments. Journal of Sedimentary Research, 44(1), 249–253. https://doi.org/10.1306/74D729D7-2B21-11D7-8648000102C1865D.

Hakanson, L. (1980). An ecological risk index for aquatic pollution control.a sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043- 1354(80)90143-8.

Hill, N. A., Simpson, S. L., & Johnston, E. L. (2013). Beyond the bed: Effects of metal contamination on recruitment to bedded sediments and overlying substrata. Environmental Pollution, 173, 182–191. https://doi.org/10.1016/j.envpol.2012.09.029 PMID:23202649.

Hou, D., He, J., Lü, C., Ren, L., Fan, Q., Wang, J., & Xie, Z. (2013). Distribution characteristics and potential ecological risk assessment of heavy metals (Cu, Pb, Zn, Cd) in water and sediments from Lake Dalinouer, China. Ecotoxicology and Environmental Safety, 93, 135–144. https://doi.org/10.1016/j.ecoenv.2013.03.012 PMID:23602414.

Hu, C., Yang, X., Dong, J., & Zhang, X. (2018). Heavy metal concentrations and chemical fractions in sediment from Swan Lagoon, China: Their relation to the physiochemical properties of sediment. Chemosphere, 209, 848–856. https://doi.org/10.1016/j.chemosphere.2018.06.113 PMID:30114733.

Jenkins, D., & Russell, L. L. (1994). Heavy Metals Contribution of Household Washing Products to Municipal Wastewater. Water Environment Research, 66(6), 805–813. https://doi.org/10.2175/WER.66.6.7.

Khalilova, H., & Mammadov, V. (2016). Assessing the anthropogenic impact on heavy metal pollution of soils and sediments in urban areas of Azerbaijan’s oil industrial region. Polish Journal of Environmental Studies, 25(1), 159– 166. https://doi.org/10.15244/pjoes/60723.

Kükrer, S. (2018). Vertical and horizontal distribution, source identification, ecological and toxic risk assessment of heavy metals in sediments of Lake Aygır, Kars, Turkey. Environmental Forensics, 19(2), 122–133. https://doi.org/1 0.1080/15275922.2018.1448905.

Kükrer, S., Çakır, Ç., Kaya, H., & Erginal, A. E. (2019). Historical record of metals in Lake Küçükçekmece and Lake Terkos (Istanbul, Turkey) based on anthropogenic impacts and ecological risk assessment. Environmental Forensics, 20(4), 385–401. https://doi.org/10.1080/15275922.2019.165798 5.

Lécrivain, N., Aurenche, V., Cottin, N., Frossard, V., & Clément, B. (2018). Multi-contamination (heavy metals, polychlorinated biphenyls and polycyclic aromatic hydrocarbons) of littoral sediments and the associated ecological risk assessment in a large lake in France (Lake Bourget). The Science of the Total Environment, 619-620, 854–865. https://doi.org/10.1016/j.scitotenv.2017.11.151 PMID:29734631.

Li, P., Qian, H., Howard, K. W. F., Wu, J., & Lyu, X. (2014). Anthropogenic pollution and variability of manganese in alluvial sediments of the Yellow River, Ningxia, northwest China. Environmental Monitoring and Assessment, 186(3), 1385–1398. https://doi.org/10.1007/s10661-013-3461-3 PMID:24122141.

Liu, E., Shen, J., Yang, L., Zhang, E., Meng, X., & Wang, J. (2010). Assessment of heavy metal contamination in the sediments of Nansihu Lake Catchment, China. Environmental Monitoring and Assessment, 161(1-4), 217–227. https://doi.org/10.1007/s10661-008-0739-y PMID:19165612.

Long, E. R., Macdonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19(1), 81–97. https://doi.org/10.1007/BF02472006.

Lorenzen, C. J. (1971). Chlorophyll-degradation products in sediments of Black Sea. In: The Black Sea Geology, Chemistry, and Biology. Woods Hole Oceanographic Institution Contribution, 2828, 426–428.

Maanan, M., Saddik, M., Maanan, M., Chaibi, M., Assobhei, O., & Zourarah, B. (2015). Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecological Indicators, 48, 616–626. https://doi.org/10.1016/j.ecolind.2014.09.034.

MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39(1), 20–31. https://doi.org/10.1007/s002440010075 PMID:10790498.

Memon, A. AKTOPRAKLIGİL, D., ÖZDEMİR, A., & VERTII, A. (2001). Heavy Metal Accumulation and Detoxification Mechanisms in Plants. Turkish Journal of Botany, 25(3), 111–121.

Monferran, M. V., Garnero, P. L., Wunderlin, D. A., & Bistoni, M. L. (2016). Potential human health risks from metals and As via Odontesthes bonariensis consumption and ecological risk assessments in a eutrophic lake. Ecotoxicology and Environmental Safety, 129, 302–310. https://doi.org/10.1016/j.ecoenv.2016.03.030 PMID:27060257.

Muller, G. (1969). Index of Geoaccumulation in Sediments of the Rhine River. GeoJournal, (2), 108–118.

Muslu, M., & Gökçay, G. F. (2020). An Alternative Resource for Supporting Health and Sustainable Nutrition: Algae (In Turkish)The Journal of Health Sciences and Research at Bandırma Onyedi Eylül University, 2(3), 221–237. https://doi.org/10.46413/boneyusbad.795543.

Özkan, E. Y., Fural, Ş., Kükrer, S., & Büyükışık, H. B. (2022). Seasonal and spatial variations of ecological risk from potential toxic elements in the southern littoral zone of İzmir Inner Gulf, Turkey. Environmental Science and Pollution Research l, 29(41), 62669–62689. https://doi.org/10.1007/s11356-022-19987-1 PMID:35411511.

Pacyna, J. M., & Pacyna, E. G. (2001). An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environmental Reviews, 9(4), 269–298. https://doi.org/10.1139/a01-012.

Pan, L., Fang, G., Wang, Y., Wang, L., Su, B., Li, D., & Xiang, B. (2018). Potentially Toxic Element Pollution Levels and Risk Assessment of Soils and Sediments in the Upstream River, Miyun Reservoir, China. International Journal of Environmental Research and Public Health, 15(11), 2364. Advance online publication. https://doi.org/10.3390/ijerph15112364 PMID:30366451.

Pejman, A., Nabi Bidhendi, G., Ardestani, M., Saeedi, M., & Baghvand, A. (2015). A new index for assessing heavy metals contamination in sediments: A case study. Ecological Indicators, 58, 365–373. https://doi.org/10.1016/j.ecolind.2015.06.012.

Sanders, M. J., Du Preez, H. H., & Van Vuren, J. H. J. (1998). The freshwater river crab, Potamonautes warreni, as a bioaccumulative indicator of iron and manganese pollution in two aquatic systems. Ecotoxicology and Environmental Safety, 41(2), 203–214. https://doi.org/10.1006/eesa.1998.1699 PMID:9756709.

Şener, Ş., Davraz, A., & Karagüzel, R. (2014). Assessment of trace metal contents in water and bottom sediments from Eğirdir Lake, Turkey. Environmental Earth Sciences, 71(6), 2807–2819. https://doi.org/10.1007/s12665-013-2659-6.

Shuman, L. M. (1998). Micronutrient Fertilizers. Journal of Crop Production, 1(2), 165–195. https://doi.org/10.1300/ J144v01n02_07.

Sigg, L., & Behra, R. (2005). Speciation and bioavailability of trace metals in freshwater environments. [). Taylor & Francis Group.]. Metal Ions in Biological Systems, 44, 47–73. https://doi.org/10.1201/9780849346071-3 PMID:15971664.

Sönmez, İ., Kaplan, M., & Sönmez, S. (2014). Effect of chemical fertilizers on environmental pollution and its prevention methods. Derim, 25(2), 24–34.

Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology 39(6), 611–627. https://doi.org/10.1007/s002540050473.

Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Wissenschaftliche Meeresuntersuchungen, 33, 566–575. https://doi.org/10.1007/BF02414780.

Topaldemir, H., Taş, B., Yüksel, B., & Ustaoğlu, F. (2023). Potentially hazardous elements in sediments and Ceratophyllum

demersum: An ecotoxicological risk assessment in Miliç Wetland, Samsun, Türkiye. Environmental Science and Pollution Research 30(10), 26397–26416. https://doi. org/10.1007/s11356-022-23937-2 PMID:36367653 .

Turoğlu, H. (1997). The Black Sea coastal plain of the Istranca region: geographical features, issues, and recommendations (In Turkish), Journal of Geography (5).

Uludağ, M. (2018). İğneada: Natural resource values, land use, problems and suggestions (1st ed.). Çantay Press.

Uludağ, M., Kükrer, S., & Ergi̇nal, G. (2018). Anthropogenicallyinduced ecological risks in Lake Erikli, NW Turkey. International Journal of Environment and Geoinformatics, 5(3), 273–283. https://doi.org/10.30897/ijegeo.459496.

Ustaoğlu, F. (2020). Ecotoxicological risk assessment and source identification of heavy metals in the surface sediments of Çömlekci stream, Giresun, Turkey. Environmental Forensics, 22(1-2), 130-142. https://doi.org/10.1080/15275922.2020.1806148.

Ustaoğlu, F., Islam, M. S., & Tokatli, C. (2022). Ecological and probabilistic human health hazard assessment of heavy metals in Sera Lake Nature Park sediments (Trabzon, Turkey). Arabian Journal of Geosciences, 15(7), 1-15. https://doi.org/10.1007/s12517-022-09838-1.

Ustaoğlu, F., & Islam, M. S. (2020). Potential toxic elements in sediment of some rivers at Giresun, Northeast Turkey: A preliminary assessment for ecotoxicological status and health risk. Ecological Indicators, 113, 106237. https://doi.org/10.1016/j.ecolind.2020.106237.

Ustaoğlu, F., Kükrer, S., Taş, B., & Topaldemir, H. (2022). Evaluation of metal accumulation in Terme River sediments using ecological indices and a bioindicator species. Environmental Science and Pollution Research (31), 47399–47415. https://doi.org/10.1007/s11356-022- 19224-9 PMID:35181859.

Varol, M., Ustaoğlu, F., & Tokatlı, C. (2022). Ecological Risk Assessment of Metals in Sediments from Three Stagnant Water Bodies in Northern Turkey. Current Pollution Reports, 8(4), 409–421. https://doi.org/10.1007/s40726-022-00239- 2.

Vrhovnik, P., Šmuc, N. R., Dolenec, T., Serafimovski, T., & Dolenec, M. (2013). An evaluation of trace metal distribution and environmental risk in sediments from the Lake Kalimanci (FYR Macedonia). Environmental Earth Sciences, 70(2), 761– 775. https://doi.org/10.1007/s12665-012-2166-1.

Wang, Y.-B., Liu, C.-W., & Wang, S.-W. (2015). Characterization of heavy-metal-contaminated sediment by using unsupervised multivariate techniques and health risk assessment. Ecotoxicology and Environmental Safety, 113, 469–476. https://doi.org/10.1016/j.ecoenv.2014.12.036 PMID:25568938.

Wang, Yi., Hu, J., Xiong, K., Huang, X., & Duan, S. (2012). Distribution of Heavy Metals in Core Sediments from Baihua Lake. Procedia Environmental Sciences, 16, 51–58. https://doi.org/10.1016/j.proenv.2012.10.008.

Wang, Y., Yang, L., Kong, L., Liu, E., Wang, L., & Zhu, J. (2015). Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, East China. Catena, 125, 200– 205. https://doi.org/10.1016/j.catena.2014.10.023.

Wilson, D. C. (2018). Potential urban runoff impacts and contaminant distributions in shoreline and reservoir environments of Lake Havasu, southwestern United States. The Science of the Total Environment, 621, 95–107. https://doi.org/10.1016/j.scitotenv.2017.11.223 PMID:29179081.

Yilgor, S., Kucuksezgin, F., & Ozel, E. (2012). Assessment of metal concentrations in sediments from Lake Bafa (Western Anatolia): An index analysis approach. Bulletin of Environmental Contamination and Toxicology, 89(3), 512–518. https://doi.org/10.1007/s00128-012-0699-3 PMID:22684362.

Zhang, G., Bai, J., Zhao, Q., Lu, Q., Jia, J., & Wen, X. (2016). Heavy metals in wetland soils along a wetland-forming chronosequence in the Yellow River Delta of China: Levels, sources and toxic risks. Ecological Indicators, 69, 331–339. https://doi.org/10.1016/j.ecolind.2016.04.042.

Zhang, H., Jiang, Y., Ding, M., & Xie, Z. (2017). Level, source identification, and risk analysis of heavy metal in surface sediments from river-lake ecosystems in the Poyang Lake, China. Environmental Science and Pollution Research International, 24(27), 21902–21916. https://doi.org/10.1007/s11356-017-9855-y PMID:28780687.

Zhang, L., Ye, X., Feng, H., Jing, Y., Ouyang, T., Yu, X., Liang, R., Gao, C., & Chen, W. (2007). Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China. Marine Pollution Bulletin, 54(7), 974–982. https://doi.org/10.1016/j.marpolbul.2007.02.010 PMID:17433373.

Zonta, R., Cassin, D., Pini, R., & Dominik, J. (2019). Assessment of heavy metal and As contamination in the surface sediments of Po delta lagoons (Italy). Estuarine, Coastal and Shelf Science, 225, 106235. https://doi.org/10.1016/j.ecss.2019.05.017.

Downloads

Published

2024-09-15

How to Cite

Kükrer, S., Uludağ, M., Erginal, G., & Erginal, A. E. (2024). Environmental impact of potentially toxic elements accumulated in surface sediments of the Erikli Lagoon, Black Sea coast (Türkiye). Oceanological and Hydrobiological Studies, 53(3), 321–337. https://doi.org/10.26881/oahs-2024.3.10

Issue

Section

Articles