Nutrient content in tissues of Groenlandia densa, Myriophyllum spicatum and Zannichellia palustris: an attempt to understand the intercompartmental relationships in a small stream in the Middle Atlas Mountains of Morocco

Authors

  • Ayoub Nouri Sultan Moulay Slimane University
  • Abdesslam Bihaoui Sultan Moulay Slimane University
  • Soumaya Hammada Sultan Moulay Slimane University
  • Lahcen Chillasse Moulay Ismail University

DOI:

https://doi.org/10.26881/oahs-2024.4.03

Keywords:

macrophyte, stream, nutrient uptake, intercompartment relationships, autoecology

Abstract

Research has long focused on the relative importance of leaves and roots as sources of nutrient supply for macrophytes, as well as the function each stream compartment plays in their growth and development. This study aims to expand the debate on aquatic ecology and to better understand the connection between compartments in aquatic systems by highlighting the relationship observed in rivers between nutrients in macrophytes tissues, water, and sediments. We measured the concentrations of P-PO4, N-NO3 and N-NH4 in three different compartments of the Amengous stream in the Middle Atlas of Morocco. Myriophyllum spicatum (L.), Groenlandia densa (L.) Fourr. and Zannichellia palustris (L.) were selected as plant species. Our results show that even if the species coexist in the same habitat, they respond differently to nutrient richness. G. densa has a higher nutrient accumulation capacity than M. spicatum and Z. palustris and prefers the water compartment as a nutrient source. Although M. spicatum can accumulate phosphate compounds from water and sediment, ammonium is not its preferred nitrogen source. Z. palustris shows a tendency to accumulate nitrogen compounds through the roots, while it prefers the assimilation of phosphorus compounds through the leaves rather than the roots.

Downloads

References

Angelstein, S., Wolfram, C., Rann, K., Kiwel, U., Frimel, S., Merbach, I., & Schubert, H. (2009). The influence of different sediment nutrient contents on growth and competition of Elodea nuttallii and Myriophyllum spicatum in nutrient-poor waters. Fundamental and Applied Limnology, 175(1), 49–57. https://doi.org/10.1127/1863-9135/2009/0175-0049.

Baattrup-Pedersen, A., Larsen, S. E., & Riis, T. (2002). Long-term effects of stream management on plant communities in two Danish lowland streams. Hydrobiologia, 481(1), 33–45. https://doi.org/10.1023/A:1021296519187.

Baethgen, W. E., & Alley, M. M. (1989). A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant kjeldahl digests. Communications in Soil Science and Plant Analysis, 20(9–10), 961–969. https://doi.org/10.1080/00103628909368129.

Benkaddour, B. (2018). Contribution à l ’ étude de la contamination des eaux et des sédiments. In These De Doctorat.

Bini, L. M., Thomaz, S. M., Murphy, K. J., & Camargo, A. F. M. (1999). Aquatic macrophyte distribution in relation to water and sediment conditions in the Itaipu Reservoir, Brazil. Hydrobiologia, 415(0), 147–154. https://doi.org/10.1023/A:1003856629837.

Camargo, J. A. (2018). Responses of aquatic macrophytes to anthropogenic pressures: Comparison between macrophyte metrics and indices. Environmental Monitoring and Assessment, 190(3), 173. Advance online publication. https://doi.org/10.1007/s10661-018-6549-y PMID:29480431.

Carden, K. M. (2002). Machrophytes as fish habitat: the role of machrophute morphology and bed complexity in fish species distributions (Issue December, p. 167). University of Wisconsin-Stevens Point, College of Natural Resources.

Carr, G. M., & Chambers, P. A. (1998). Macrophyte growth and sediment phosphorus and nitrogen in a Canadian prairie river. Freshwater Biology, 39(3), 525–536. https://doi.org/10.1046/j.1365-2427.1998.00300.x.

Cataldo, D. A., Schrader, L. E., & Youngs, V. L. (1974). Analysis by Digestion and Colorimetric Assay of Total Nitrogen in Plant Tissues High in Nitrate 1. Crop Science, 14(6), 854– 856. https://doi.org/10.2135/cropsci1974.0011183X001400060024x.

Clarke, S. J. (2002). Vegetation growth in rivers: Influences upon sediment and nutrient dynamics. Progress in Physical Geography, 26(2), 159–172. https://doi.org/10.1191/0309133302pp324ra.

Costa, M. L. R., & Henry, R. (2010). Phosphorus, nitrogen, and carbon contents of macrophytes in lakes lateral to a tropical river (Paranapanema River, São Paulo, Brazil). Acta Limnologica Brasiliensia, 22(02), 122–132. https://doi.org/10.1590/S2179-975X2010000200002.

Cotton, J. A., Wharton, G., Bass, J. A. B., Heppell, C. M., & Wotton, R. S. (2006). The effects of seasonal changes to in-stream vegetation cover on patterns of flow and accumulation of sediment. Geomorphology, 77(3–4), 320–334. https://doi.org/10.1016/j.geomorph.2006.01.010.

De Nardi, F., Puaud, C., Lodé, T., Lecorff, J., Parinet, B., & Pontié, M. (2010). Preliminary diagnosis and prospects for the elimination of phosphorus (P) in excess in Lake Ribou (Cholet, Maine-et-Loire, France). Revue des Sciences de l’Eau, 23(2), 159–171. https://doi.org/10.7202/039907ar.

Denny, P. (1972). Sites of nutrient absorption in aquatic macrophytes. Journal of Ecology, 60, 819–829. https://doi.org/10.2307/2258568.

Dong, B., Qin, B., Gao, G., & Cai, X. (2014). Submerged macrophyte communities and the controlling factors in large, shallow Lake Taihu (China) : Sediment distribution and water depth. Journal of Great Lakes Research, 40, 646–655. Advance online publication. https://doi.org/10.1016/j.jglr.2014.04.007.

Dutartre, A., Haury, J., & Peltre, M.-C. Alain Dutartre, Jacques Haury, & Marie-Christine Peltre. (2008). Plantes aquatiques d’eau douce : biologie, écologie et gestion. Cemagref HS Revue Ingénierie Eau-Agriculture-Territoire, 161. https://books.google.at/books/about/Plantes_aquatiques_d_eau_douce_biologie.html?id=16R4BvZK1HAC&redir_esc=y.

Ensminger, I., Foerster, J., Hagen, C., & Braune, W. (2005). Plasticity and acclimation to light reflected in temporal and spatial changes of small-scale macroalgal distribution in a stream. Journal of Experimental Botany, 56(418), 2047– 2058. https://doi.org/10.1093/jxb/eri203 PMID:15996986.

Fernández-Aláez, C., Fernández-Aláez, M., García-Criado, F., & García-Girón, J. (2018). Environmental drivers of aquatic macrophyte assemblages in ponds along an altitudinal gradient. Hydrobiologia, 812(1), 79–98. https://doi.org/10.1007/s10750-016-2832-5.

Golterman, H. L. B. T.-D. in W. S. (Ed.). (1975). Chapter 5 The phosphate cycle. In Developments in Water Science (Vol. 2, Issue C, pp. 87–98). Elsevier. https://doi.org/10.1016/S0167-5648(08)71062-1.

Gurnell, A. M., Van Oosterhout, M. P., De Vlieger, B., & Goodson, J. M. (2006). Reach-scale interactions between aquatic plants and physical habitat: River Frome, Dorset. River Research and Applications, 22(6), 667–680. https://doi.org/10.1002/rra.929.

Haury, J., Cazaubon, A., Barrat-Segretain, M.-H., Elger, A., & Thiébaut, G. (2008). Analyse multi-compartiments et rôles fonctionnels des macrophytes dans les hydrosystèmes. Ouvrage GIS Ingénieries Eau-Agriculture-Territoires Numéro Spécial Plantes Aquatiques d’eau Douce: Biologie, Écologie et Gestion, 79–90.

Huang, X., Wang, L., Guan, X., Gao, Y., Liu, C., & Yu, D. (2018). The root structures of 21 aquatic plants in a macrophyte-dominated lake in China. Journal of Plant Ecology, 11(1), 39–46. https://doi.org/10.1093/jpe/rtx018,

Korol, A. R., Ahn, C., & Noe, G. B. (2016). Richness, biomass, and nutrient content of a wetland macrophyte community affect soil nitrogen cycling in a diversity-ecosystem functioning experiment. Ecological Engineering, 95, 252– 265. https://doi.org/10.1016/j.ecoleng.2016.06.057.

Li, W., Li, Y., Zhong, J., Fu, H., Tu, J., & Fan, H. (2018). Submerged Macrophytes Exhibit Different Phosphorus Stoichiometric Homeostasis. In Frontiers in Plant Science (Vol. 9, p. 1207). https://www.frontiersin.org/article/10.3389/fpls.2018.01207 https://doi.org/10.3389/fpls.2018.01207.

Madsen, T. V., & Cedergreen, N. (2002). Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream. Freshwater Biology, 47(2), 283–291. https://doi.org/https://doi.org/10.1046/j.1365-2427.2002.00802.x https://doi.org/10.1046/j.1365-2427.2002.00802.x.

Mebane, C. A., Ray, A. M., & Marcarelli, A. M. (2021). Nutrient limitation of algae and macrophytes in streams: Integrating laboratory bioassays, field experiments, and field data. PLoS ONE, 16(6 June), e0252904. https://doi.org/10.1371/journal.pone.0252904.

Mony, C., Thiébaut, G., & Muller, S. (2007). Changes in morphological and physiological traits of the freshwater plant Ranunculus peltatus with the phosphorus bioavailability. Plant Ecology, 191(1), 109–118. https://doi.org/10.1007/s11258-006-9219-z.

Moura Júnior, E. G., Pott, A., Severi, W., & Zickel, C. S. (2019). Response of aquatic macrophyte biomass to limnological changes under water level fluctuation in tropical reservoirs. Brazilian Journal of Biology, 79(1), 120–126. https://doi.org/10.1590/1519-6984.179656 PMID:29538484.

Muller, S., Peltre, M.-C., Ollivier, M., Petitdidier, D., Thiebaut, G., Dutartre, A., Moreau, A., Mutterlein, C., Barbe, J., & Lagrange, C. (1997). Biologie et écologie des espèces végétales proliférant en France. Les Études de l’agence de l’eau, 68, 199.

Nouri, A., Hammada, S., & Chillasse, L. (2022). Exploring factors driving macrophytes in rivers—A case study in Middle Atlas Morocco. Ecohydrology, (April), 1–15. https://doi.org/10.1002/eco.2506.

O’Hare, M. T., Baattrup-Pedersen, A., Baumgarte, I., Freeman, A., Gunn, I. D. M., Lázár, A. N., Sinclair, R., Wade, A. J., & Bowes, M. J. (2018). Responses of aquatic plants to eutrophication in rivers: A revised conceptual model. In Frontiers in Plant Science (Vol. 9, pp. 1–13). Issue April., https://doi.org/10.3389/fpls.2018.00451.

Podlasińska, J., Wróbel, M., Szpikowski, J., & Szpikowska, G. (2021). Bioaccumulation of trace metals in Groenlandia densa plant reintroduced in western Pomerania. Processes (Basel, Switzerland), 9(5), 1–12. https://doi.org/10.3390/pr9050808.

Qu, X. D., Yu, Y., Zhang, M., Duan, L. F., & Peng, W. Q. (2018). [Relationship Between Macrophyte Communities and Macroinvertebrate Communities in an Urban Stream]. Huan Jing Ke Xue, 39(2), 783–791. https://doi.org/10.13227/j.hjkx.201708082 PMID:29964842.

Robach, F., Hajnsek, I., Eglin, I., & Trémolières, M. (1995). Phosphorus sources for aquatic macrophytes in running waters: Water or sediment? Acta Botanica Gallica, 142(6), 719–731. https://doi.org/10.1080/12538078.1995.10515296.

Rodier, J. (2009). Jean Rodier - L’analyse de l’eau. In D. 2009 Paris : Dunod (Ed.), International Journal of Biological and Chemical Sciences (9éme Editi, Vol. 1, Issue 1, p. 1579).

Scheffer, M., Szabó, S., Gragnani, A., Van Nes, E. H., Rinaldi, S., Kautsky, N., Norberg, J., Roijackers, R. M. M., & Franken, R. J. M. (2003). Floating plant dominance as a stable state. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 4040–4045. https://doi.org/10.1073/pnas.0737918100 PMID:12634429.

Shilla, D. A., Asaeda, T., Kian, S., Lalith, R., & Manatunge, J. (2006). Phosphorus concentration in sediment, water and tissues of three submerged macrophytes of Myall Lake, Australia. Wetlands Ecology and Management, 14(6), 549– 558. https://doi.org/10.1007/s11273-006-9007-5.

Stefanidis, K., & Papastergiadou, E. (2019). Linkages between macrophyte functional traits and water quality: Insights from a study in freshwater lakes of Greece. Water (Basel), 11(5), 1047. Advance online publication. https://doi.org/10.3390/w11051047.

Steffen, K. (2013). Habitat ecology and long-term development of the macrophyte vegetation of north-west German streams and rivers since the 1950s. 131. http://ediss.uni-goettingen.de/bitstream/handle/11858/00-1735-0000-0001-BC30-F/Steffen_2013_Dissertation.pdf?sequence=1.

Tan, X., Yuan, G., Fu, H., Peng, H., Ge, D., Lou, Q., & Zhong, J. (2019). Effects of ammonium pulse on the growth of three submerged macrophytes. PLoS One, 14(7), e0219161. https://doi.org/10.1371/journal.pone.0219161 PMID:31339879.

Thiébaut, G. (2005). Does competition for phosphate supply explain the invasion pattern of Elodea species? Water Research, 39(14), 3385–3393. https://doi.org/10.1016/j.watres.2005.05.036 PMID:16026814.

Thiébaut, G. (2008). Phosphorus and aquatic plants. In P. J. White & J. P. Hammond (Eds.), The Ecophysiology of Plant-Phosphorus Interactions (pp. 31–49). Springer Netherlands., https://doi.org/10.1007/978-1-4020-8435-5_3.

Thiebaut, G., & Muller, S. (2003). Linking phosphorus pools of water, sediment and macrophytes in running waters. Annales de Limnologie, 39(4), 307–316. https://doi.org/10.1051/limn/2003025.

Valley, R. D., & Newman, R. M. (1998). Competitive interactions between Eurasian watermilfoil and northern watermilfoil in experimental tanks. Journal of Aquatic Plant Management, 36(2), 121–126.

Weekes, L., Matson, R., Kelly, F., FitzPatrick, Ú., & Kelly-Quinn, M. (2014). Composition and characteristics of macrophyte assemblages in small streams in Ireland. Biology and Environment, 114B(3), 163–180. https://doi.org/10.1353/bae.2014.0003.

Xing, W., Shi, Q., Liu, H., & Liu, G. (2016). Growth rate, protein: RNA ratio and stoichiometric homeostasis of submerged macrophytes under eutrophication stress. Knowledge and Management of Aquatic Ecosystems, 417, 25. https://doi.org/10.1051/kmae/2016012.

Zhu, M., Zhu, G., Nurminen, L., Wu, T., Deng, J., Zhang, Y., Qin, B., & Ventelä, A. M. (2015). The influence of macrophytes on sediment resuspension and the effect of associated nutrients in a shallow and large lake (Lake Taihu, China). PLoS One, 10(6), e0127915. https://doi.org/10.1371/journal.pone.0127915 PMID:26030094.

Zhu, Z., Song, S., Li, P., Jeelani, N., Wang, P., Yuan, H., Zhang, J., An, S., & Leng, X. (2016). Growth and physiological responses of submerged plant Vallisneria natans to water column ammonia nitrogen and sediment copper. PeerJ, 4, e1953–e1953. https://doi.org/10.7717/peerj.1953 PMID:27123381.

Downloads

Published

2024-12-24

How to Cite

Nouri, A., Bihaoui, A., Hammada, S., & Chillasse, L. (2024). Nutrient content in tissues of Groenlandia densa, Myriophyllum spicatum and Zannichellia palustris: an attempt to understand the intercompartmental relationships in a small stream in the Middle Atlas Mountains of Morocco. Oceanological and Hydrobiological Studies, 53(4), 355–364. https://doi.org/10.26881/oahs-2024.4.03

Issue

Section

Articles