Driving factors affecting zooplankton functional groups in a shallow eutrophic lake
DOI:
https://doi.org/10.26881/oahs-2024.4.07Keywords:
functional groups, zooplankton, biomass, Lake Yeniçağa, eutrophicationAbstract
The important role of zooplankton in linking different trophic levels has been the subject of extensive research, highlighting their crucial contribution to aquatic ecosystems and energy flow. Classification of organisms into functional groups using a method that combines taxonomic assessments with direct functional measurements is very effective in understanding their interactions with the environment. Our objective was to determine the seasonal changes of zooplankton in Lake Yeniçağa using zooplankton functional groups. A total of 19 zooplankton species were identified in the lake and classified into six functional groups. Medium-sized cladoceran and copepod carnivorous feeders (MCC) accounted for 45.74% of all functional groups and were the dominant group in the lake. Throughout the year, medium and large zooplankton generally dominated in the lake, with smaller functional groups briefly dominating in spring and autumn. Statistical analysis indicates that medium-sized cladoceran and copepod filter feeders (MCF) and large-sized cladoceran and copepod filter feeders (LCF) showed a positive relationship with Secchi depth and a negative relationship with chlorophyll a. Other groups exhibited relatively lower correlations with environmental parameters. It can be concluded that the observed seasonal changes in these groups are affected not only by environmental parameters, but also by the availability of food resources.
Downloads
References
Anderson, D. M., Glibert, P. M., & Burkholder, J. M. (2002). Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries, 25, 704–726. https://doi.org/10.1007/BF02804901.
APHA. (1992). Standard Methods for the Examination of Waters and Wastewaters (18th ed.). American Public Health Association.
Barnett, A. J., Finlay, K., & Beisner, B. E. (2007). Functional diversity of crustacean zooplankton communities: Towards a trait-based classification. Freshwater Biology, 52(5), 796– 813. https://doi.org/10.1111/j.1365-2427.2007.01733.x.
Bennett, E. M., Carpenter, S. R., & Caraco, N. F. (2001). Human impact on erodable phosphorus and eutrophication: A global perspective: Increasing accumulation of phosphorus in soil threatens rivers, lakes, and coastal oceans with eutrophication. Bioscience, 51(3), 227–234. https://doi.org/10.1641/0006-3568(2001)051[0227:HIOEP A]2.0.CO;2.
Błędzki, L. A., & Rybak, J. I. (2016). Freshwater Crustacean Zooplankton of Europe: Cladocera & Copepoda (Calanoida, Cyclopoida). Key to Species Identification, with Notes on Ecology, Distribution, Methods and Introduction to Data Analysis. Springer International Publishing. https://doi.org/10.1007/978-3-319-29871-9.
Bogdan, K. G., & Gilbert, J. J. (1984). Body size and food size in freshwater zooplankton. Proceedings of the National Academy of Sciences of the United States of America, 81(20), 6427–6431.
Bottrell, H. H., Duncan, A., Gliwicz, Z., Grygierek, E., Herzig, A., Hilbricht-Ilkowska, A., Kurasawa, H., Larsson, P., & Weglenska, T. (1976). Review of some problems in zooplankton production studies. Norwegian Journal of Zoology, 21, 477–483.
Bradshaw, E. G., Rasmussen, P., & Odgaard, B. V. (2005). Mid-to late-Holocene land-use change and lake development at Dallund S0, Denmark: Synthesis of multiproxy data, linking land and lake. The Holocene, 15(8), 1152–1162. https://doi.org/10.1191/0959683605hl887rp.
Brooks, J. L., & Dodson, S. I. (1965). Predation, body size, and composition of plankton. Science, 150(3692), 28–35. https://doi.org/10.1126/science.150.3692.28 PMID:17829740.
Carlson, R. E. (1977). A trophic state index for lakes 1. Limnology and Oceanography, 22(2), 361–369. https://doi.org/10.4319/lo.1977.22.2.0361.
Chislock, M. F., Doster, E., Zitomer, R. A., & Wilson, A. E. (2013). Eutrophication: Causes, consequences, and controls in aquatic ecosystems. Nature Education Knowledge, 4(4), 10.
Dorak, Z., Köker, L., Gürevin, C., & Saç, G. (2023). How do environmental variables affect the temporal dynamics of zooplankton functional groups in a hyper-eutrophic wetland? Environmental Science and Pollution Research International, 30(43), 97115–97127. https://doi.org/10.1007/s11356-023-29252-8 PMID:37587395.
Dumont, H. J., Van de Velde, I., & Dumont, S. (1975). The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia, 19(1), 75–97. https://doi.org/10.1007/BF00377592 PMID:28308833.
Duré, G. A. V., Simões, N. R., Braghin, L. D. S. M., & Ribeiro, S. M. M. S. (2021). Effect of eutrophication on the functional diversity of zooplankton in shallow ponds in Northeast Brazil. Journal of Plankton Research, 43(6), 894–907. https://doi.org/10.1093/plankt/fbab064.
Dussart, B. H., & Defaye, D. (2001). Introduction to the Copepoda. Backhuys, Winschoten.
Ejsmont-Karabin, J. (1998). Empirical equations for biomass calculation of planktonic rotifers. Polskie Archiwum Hydrobiologii. Polskie Archiwum Hydrobiologii, 45(4), 513– 522.
Evrendilek, F., Berberoglu, S., Karakaya, N., Cilek, A., Aslan, G., & Gungor, K. (2011). Historical spatiotemporal analysis of land-use/land-cover changes and carbon budget in a temperate peatland (Turkey) using remotely sensed data. Applied Geography (Sevenoaks, England), 31(3), 1166–1172. https://doi.org/10.1016/j.apgeog.2011.03.007.
Fintelman-Oliveira, E., Kruk, C., Lacerot, G., Klippel, G., & Branco, C. W. C. (2023). Zooplankton functional groups in tropical reservoirs: Discriminating traits and environmental drivers. Hydrobiologia, 850(2), 365–384. https://doi.org/10.1007/s10750-022-05074-6.
Ger, K. A., Hansson, L. A., & Lürling, M. (2014). Understanding cyanobacteria-zooplankton interactions in a more eutrophic world. Freshwater Biology, 59(9), 1783–1798. https://doi.org/10.1111/fwb.12393.
Gilbert, J. J. (2022). Food niches of planktonic rotifers: Diversification and implications. Limnology and Oceanography, 67(10), 2218–2251. https://doi.org/10.1002/lno.12199.
Gilbert, J. J., & Durand, M. W. (1990). Effect of Anabaena flos‐ aquae on the abilities of Daphnia and Keratella to feed and reproduce on unicellular algae. Freshwater Biology, 24(3), 577–596. https://doi.org/10.1111/j.1365-2427.1990.tb00734.x.
Gliwicz, Z. M. (1990). Food thresholds and body size in cladocerans. Nature, 343(6259), 638–640. https://doi.org/10.1038/343638a0.
Gliwicz, Z. M., & Lampert, W. (1990). Food thresholds in Daphnia species in the absence and presence of blue-green filaments. Ecology, 71(2), 691–702. https://doi.org/10.2307/1940323.
Goździejewska, A. M., Koszałka, J., Tandyrak, R., Grochowska, J., & Parszuto, K. (2021). Functional responses of zooplankton communities to depth, trophic status, and ion content in mine pit lakes. Hydrobiologia, 848(11), 2699–2719. https://doi.org/10.1007/s10750-021-04590-1.
Gulati, R. D. (1990). Structural and grazing responses of zooplankton community to biomanipulation of some Dutch water bodies. Hydrobiologia, 200/201, 99–118. https://doi.org/10.1007/BF02530332.
Hairston, N. G., Jr., & Hairston, N. G., Sr. (1993). Cause-effect relationships in energy flow, trophic structure, and interspecific interactions. American Naturalist, 142(3), 379– 411. https://doi.org/10.1086/285546.
Hanazato, T. (2001). Pesticide effects on freshwater zooplankton: An ecological perspective. Environmental Pollution, 112(1), 1–10. https://doi.org/10.1016/S0269-7491(00)00110-X PMID:11202648.
Haney, J. F. (1987). Field studies on zooplankton‐cyanobacteria interactions. New Zealand Journal of Marine and Freshwater Research, 21(3), 467–475. https://doi.org/10.1080/00288330.1987.9516242.
Hébert, M. P., Beisner, B. E., & Maranger, R. (2016). A meta-analysis of zooplankton functional traits influencing ecosystem function. Ecology, 97(4), 1069–1080. https://doi.org/10.1890/15-1084.1 PMID:27220222.
Henrikson, L., Nyman, H. G., Oscarson, H. G., & Stenson, J. A. (1980). Trophic changes, without changes in the external nutrient loading. Hydrobiologia, 68(3), 257–263. https://doi.org/10.1007/BF00018835.
Hurst, T. P. (2007). Causes and consequences of winter mortality in fishes. Journal of Fish Biology, 71(2), 315–345. https://doi.org/10.1111/j.1095-8649.2007.01596.x.
Jeppesen, E., Kronvang, B., Olesen, J. E., Audet, J., Søndergaard, M., Hoffmann, C. C., Andersen, H. E., Lauridsen, T. L., Liboriussen, L., Larsen, S. E., Beklioglu, M., Meerhoff, M., Özen, A., & Özkan, K. (2011). Climate change effects on nitrogen loading from cultivated catchments in Europe: Implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia, 663(1), 1–21. https://doi.org/10.1007/s10750-010-0547-6.
John, E. H., Batten, S. D., Harris, R. P., & Hays, G. C. (2001). Comparison between zooplankton data collected by the Continuous Plankton Recorder survey in the English Channel and by WP-2 nets at station L4, Plymouth (UK). Journal of Sea Research, 46(3-4), 223–232. https://doi.org/10.1016/S1385-1101(01)00085-5.
Jongman, R. G. H., Braak, C. J. F., & Tongeren, O. F. R. (1995). Data Analysis in Community and Landscape Ecology. Cambridge University Press. https://doi.org/10.1017/CBO9780511525575.
Karabin, A. (1985). Pelagic zooplankton (Rotatoria + Cladocera) variation in the process of lake eutrophication. I. Structural and quantitative features. Ekologia Polska, 33, 567–616.
Kılınç, S. (2003). The phytoplankton community of Yeniçaga Lake (Bolu, Turkey). Nova Hedwigia, 76(3-4), 429–442. https://doi.org/10.1127/0029-5035/2003/0076-0429.
Kirk, K. L., & Gilbert, J. J. (1992). Variation in herbivore response to chemical defenses: Zooplankton foraging on toxic cyanobacteria. Ecology, 73(6), 2208–2217. https://doi.org/10.2307/1941468.
Koste, W. (1978). Rotatoria, die Rädertiere Mitteleuropas (2nd ed.). Gebruder Borntraeger.
Krztoń, W., & Kosiba, J. (2020). Variations in zooplankton functional groups density in freshwater ecosystems exposed to cyanobacterial blooms. The Science of the Total Environment, 730, 139044. https://doi.org/10.1016/j.scitotenv.2020.139044 PMID:32402967.
Lair, N. (1992). Daytime grazing and assimilation rates of planktonic copepods Acanthodiaptomus denticornis and Cyclops vicinus vicinus. Comparison of spatial and resource utilisation by rotifers and cladoceran communities in a eutrophic lake. Hydrobiologia, 231, 107–117. https://doi.org/10.1007/BF00006503.
Lampert, W. (1987). Laboratory studies on zooplanktoncyanobacteria interactions. New Zealand Journal of Marine and Freshwater Research, 21(3), 483–490. https://doi.org/10.1080/00288330.1987.9516244.
Lewis, W. M., Jr., & Wurtsbaugh, W. A. (2008). Control of lacustrine phytoplankton by nutrients: Erosion of the phosphorus paradigm. International Review of Hydrobiology, 93(4-5), 446–465. https://doi.org/10.1002/iroh.200811065.
Litchman, E., Ohman, M. D., & Kiørboe, T. (2013). Trait-based approaches to zooplankton communities. Journal of Plankton Research, 35(3), 473–484. https://doi.org/10.1093/plankt/fbt019.
Lürling, M., & Van Donk, E. (1997). Morphological changes in Scenedesmus induced by infochemicals released in situ from zooplankton grazers. Limnology and Oceanography, 42(4), 783–788. https://doi.org/10.4319/lo.1997.42.4.0783.
Ma, C., Mwagona, P. C., Yu, H., Sun, X., Liang, L., Mahboob, S., & Al-Ghanim, K. A. (2019). Seasonal dynamics of zooplankton functional group and its relationship with physico-chemical variables in high turbid nutrient-rich Small Xingkai Wetland Lake, Northeast China. Journal of Freshwater Ecology, 34(1), 65–79. https://doi.org/10.1080/02705060.2018.1443847.
Makino, W., & Ban, S. (1998). Diel changes in vertical overlap between Cyclops strenuus (Copepoda; Cyclopoida) and its prey in oligotrophic Lake Toya, Hokkaido, Japan. Journal of Marine Systems, 15(1-4), 139–148. https://doi.org/10.1016/S0924-7963(97)00073-0.
Marker, A. F. H. (1994). Chlorophyll a SCA method revision (1st ed.). National Rivers Authority.
May, L., Bailey-Watts, A., & Kirika, A. (2001). The relationship between Trichocerca pusilla (Jennings), Aulacoseira spp. and water temperature in Loch Leven, Scotland, UK. Hydrobiologia, 446/447, 29–34. https://doi.org/10.1023/A:1017508719110.
McCauley, E., & Kalff, J. (1981). Empirical relationships between phytoplankton and zooplankton biomass in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 38(4), 458–463. https://doi.org/10.1139/f81-063.
Negrea, S. (1983). Cladocera. In Fauna R.S. Romania, Academiei Bucuresti, 4(12), 399.
Obertegger, U., Smith, H. A., Flaim, G., & Wallace, R. L. (2011). Using the guild ratio to characterize pelagic rotifer communities. Hydrobiologia, 662(1), 157–162. https://doi.org/10.1007/s10750-010-0491-5.
Ochocka, A., & Pasztaleniec, A. (2016). Sensitivity of plankton indices to lake trophic conditions. Environmental Monitoring and Assessment, 188(11), 1–16. https://doi.org/10.1007/s10661-016-5634-3 PMID:27752916.
Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O’Hara, R., Solymos, P., Stevens, M., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M., Lahti, L., McGlinn, D., Ouellette, M., Ribeiro Cunha, E., Smith, T., Stier, A., Ter Braak, C., & Weedon, J. (2024). Vegan: Community Ecology Package. R package version 2.6-7 [computer software].
Paturej, E., Gutkowska, A., Koszalka, J., & Bowszys, M. (2017). Effect of physicochemical parameters on zooplankton in the brackish, coastal Vistula Lagoon. Oceanologia, 59(1), 49–56. https://doi.org/10.1016/j.oceano.2016.08.001.
Phillips, G., Pietiläinen, O. P., Carvalho, L., Solimini, A., Lyche Solheim, A., & Cardoso, A. C. (2008). Chlorophyll–nutrient relationships of different lake types using a large European dataset. Aquatic Ecology, 42(2), 213–226. https://doi.org/10.1007/s10452-008-9180-0.
Pomerleau, C., Sastri, A. R., & Beisner, B. E. (2015). Evaluation of functional trait diversity for marine zooplankton communities in the Northeast subarctic Pacific Ocean. Journal of Plankton Research, 37(4), 712–726. https://doi.org/10.1093/plankt/fbv045.
Prairie, Y. T., Duarte, C. M., & Kalff, J. (1989). Unifying nutrient– chlorophyll relationships in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 46(7), 1176–1182. https://doi.org/10.1139/f89-153.
Sakamoto, M. (1966). Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Archiv für Hydrobiologie, 62, 1–28.
Saygı Başbuğ, Y. (2005). Seasonal succession and distribution of zooplankton in Yeniçağa Lake in Northwestern Turkey. Zoology in the Middle East, 34(1), 93–100. https://doi.org/10.1080/09397140.2005.10638088.
Saygı, Y. (2023). Yeniçağa Gölündeki (Bolu) Zooplankton Biyokütlesinin Zamana Bağlı Değişimi. Hacettepe University Scientific Research Project Commission, Ankara, Turkey (Report No. 19615).
Saygı, Y., & Demirkalp, F. Y. (2004). Trophic status of shallow Yeniçağa Lake (Bolu, Turkey) in relation to physical and chemical environment. Fresenius Environmental Bulletin, 13(5), 385–393.
Saygı, Y., & Yiğit, S. (2005). Rotifera community structure of Lake Yeniçağa, Turkey. Journal of Freshwater Ecology, 20(1), 197–199. https://doi.org/10.1080/02705060.2005.9664954.
Saygı, Y., & Yiğit, S. A. (2012). Heavy metals in Yeniçağa Lake and its potential sources: Soil, water, sediment, and plankton. Environmental Monitoring and Assessment, 184(3), 1379–1389. https://doi.org/10.1007/s10661-011-2048-0 PMID:21494824.
Schindler, D. W. (1977). Evolution of phosphorus limitation in lakes. Science, 195(4275), 260–262. https://doi.org/10.1126/science.195.4275.260 PMID:17787798.
Schindler, D. W., Hecky, R. E., Findlay, D. L., Stainton, M. P., Parker, B. R., Paterson, M. J., Beaty, K. G., Lyng, M., & Kasian, S. E. M. (2008). Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences of the United States of America, 105(32), 11254–11258. https://doi.org/10.1073/pnas.0805108105 PMID:18667696.
Smith, V. H. (1982). The nitrogen and phosphorus dependence of algal biomass in lakes: An empirical and theoretical analysis. Limnology and Oceanography, 27(6), 1101–1111. https://doi.org/10.4319/lo.1982.27.6.1101.
Sommer, U., Sommer, F., Santer, B., Jamieson, C., Boersma, M., Becker, C., & Hansen, T. (2001). Complementary impact of copepods and cladocerans on phytoplankton. Ecology Letters, 4(6), 545–550. https://doi.org/10.1046/j.1461-0248.2001.00263.x.
Søndergaard, M., & Jeppesen, E. (2007). Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. Journal of Applied Ecology, 44(6), 1089–1094. https://doi.org/10.1111/j.1365-2664.2007.01426.x.
Stemberger, R. S. (1979). A guide to the rotifers of the Laurentian Great Lakes. Environmental Monitoring and Support Laboratory.
Sun, S., Huo, Y., & Yang, B. (2010). Zooplankton functional groups on the continental shelf of the yellow sea. Deep-sea Research. Part II, Topical Studies in Oceanography, 57(11-12), 1006–1016. https://doi.org/10.1016/j.dsr2.2010.02.002.
Tavsanoglu, U. N., & Akbulut, N. E. (2019). Seasonal dynamics of riverine zooplankton functional groups in Turkey: Kocaçay Delta as a case study. Turkish Journal of Fisheries and Aquatic Sciences, 20(1), 69–77. https://doi.org/10.4194/1303-2712-v20_1_07.
Telesh, I., Postel, L., Heerkloss, R., Mironova, E., & Skarlato, S. (2009). Zooplankton of the Open Baltic Sea: Extended Atlas. Meereswissenschaftliche Berichte.
Tõnno, I., Agasild, H., Kõiv, T., Freiberg, R., Nõges, P., & Nõges, T. (2016). Algal diet of small-bodied crustacean zooplankton in a cyanobacteria-dominated eutrophic lake. PLoS One, 11(4), e0154526. https://doi.org/10.1371/journal.pone.0154526 PMID:27124652.
Vrede, T., Ballantyne, A., Mille-Lindblom, C., Algesten, G., Gudasz, C., Lindahl, S., & Brunberg, A. K. (2009). Effects of N:P loading ratios on phytoplankton community composition, primary production and N fixation in a eutrophic lake. Freshwater Biology, 54(2), 331–344. https://doi.org/10.1111/j.1365-2427.2008.02118.x.
Wang, H., Huo, T., Du, X., Wang, L., Song, D., Huang, X., & Zhao, C. (2022). Zooplankton community and its environmental driving factors in Ulungur Lake, China. Journal of Freshwater Ecology, 37(1), 387–403. https://doi.org/10.1080/02705060.2022.2093279.
Wen, X., Zhai, P., Feng, R., Yang, R., & Xi, Y. (2017). Comparative analysis of the spatio-temporal dynamics of rotifer community structure based on taxonomic indices and functional groups in two subtropical lakes. Scientific Reports, 7(1), 578. https://doi.org/10.1038/s41598-017-00666-y PMID:28373702.
Wright, D. I., & Shapiro, J. (1984). Nutrient reduction by biomanipulation: An unexpected phenomenon and its possible cause. Internationale Vereinigung für theoretische und angewandte Limnologie. Verhandlungen - Internationale Vereinigung für Theoretische und Angewandte Limnologie, 22(1), 518–524. https://doi.org/10.1080/03680770.1983.11897338.
Yin, X. W., Liu, P. F., Zhu, S. S., & Chen, X. X. (2010). Food selectivity of the herbivore Daphnia magna (Cladocera) and its impact on competition outcome between two freshwater green algae. Hydrobiologia, 655(1), 15–23. https://doi.org/10.1007/s10750-010-0399-0.
Zar, J. H. (2010). Biostatistical analysis. Prentice-Hall.
Zengin, M., İlhan, S., Küçükkara, R., Güler, M., & Oktay, Ç. (2021). An evaluation of fisheries management on the Lake Yeniçağa, Bolu, Turkey. Acta Aquatica Turcica, 17(4), 489-504. (In Turkish). https://doi.org/10.22392/actaquatr.867466.
Zhao, F., Yu, H. X., Ma, C. X., Sun, X., Liu, D., Shang, L. D., Liu, J. M., Li, X. Y., Li, S., Li, X. C., Li, T. Y., Yu, Shabani, I. E., Wang, Y. Z., Su, L. J., Zhang, L. M., Mu, Y. Y., Xiao, L., Tian, Z., Pan, C., Sun, B., Pan, H. F., Shang, G. Y. Q., Chai, Y., Meng, Y. (2020). Characteristics of zooplankton functional groups and their environmental factors in the Harbin Section of the Songhua River. China. Applied Ecology and Environmental Research, 18(5), 7457–7471. https://doi.org/10.15666/aeer/1805_74577471.