An alternative plant for sustainable future: some biochemical properties of watercress (Nasturtium officinale R.Br.)

Authors

  • Hilal Bulut Fırat University
  • Serdar Murat Yılmaz Fırat University

DOI:

https://doi.org/10.26881/oahs-2025.1.01

Keywords:

Nasturtium officinale, fatty acid, lipophilic vitamin, phytosterol, Türkiye

Abstract

Watercress, a semi-aquatic plant with high nutritional value, is a member of the Brassicaceae family. It is widely distributed in wetlands in Turkey and grows in or around water. This study aimed to determine some biochemical properties of Nasturtium officinale grown in eastern Turkey, such as fatty acids, lipophilic vitamins, and phytosterols. In this context, plant collected from a predetermined area were separated into roots, stems, and leaves after the washing process in the autumn of 2023. Chemical characterisation was determined by techniques such as gas chromatography for fatty acids and HPLC for vitamins and sterols. The importance of the components contained in the plant was revealed by evaluating the results obtained in the light of the literature. These results show that linolenic acid (C18:n3 LNA) was found to be present in the root at a rate of 22.71% and in the leaf at a rate of 42.45%. Palmitic acid (C16:0) was found in the stem at a rate of 17.73%. The lipophilic vitamin analysis of watercress revealed the presence of vitamins K1, K2, D2, D3, δ-tocopherol, α-tocopherol, ergosterol, sterol, β-sitosterol, retinol, and retinol acetate. It was determined that ergosterol had the highest value in the leaf part (416.5 mg/g−1).

Downloads

Download data is not yet available.

References

Alshahrani, A. A., Al-Tuwaijri, R., Abuoliat, Z. A., Alyabsi, M., AlJasser, M. I., & Alkhodair, R. (2020). Prevalence and clinical characteristics of alopecia areata at a tertiary care center in Saudi Arabia. Dermatology Research and Practice, 1-4, 7194270. https://doi. org/10.1155/2020/7194270.

Bahramikia, S., & Yazdanparast, R. (2008). Effect of hydroalcoholic extracts of Nasturtium officinale leaves on lipid profile in high-fat diet rats. Journal of Ethnopharmacology, 115(1), 116–121. https://doi.org/10.1016/j.jep.2007.09.015.

Bartella, L., Mazzotti, F., Talarico, I. R., Santoro, I., & Di Donna, L. (2023). Paper spray tandem mass spectrometry for assessing oleic, linoleic and linolenic acid content in edible vegetable oils. Separations, 10(1), 26. https://doi. org/10.3390/separations10010026.

Caf, F. (2021). Ekonomik Değeri olan Bazı Alg Türlerinden Elde Edilen Ekstrelerin Biyokimyasal Analizi ve Saccharomyces cerevisiae Kültüründe Besinsel Değerinin Ölçülmesi [Doktora Tezi]. Fırat Universitesi Fen Bilimleri Enstitüsü, 101p.

Christie, W. W. (1992). Gas chromatography and lipids, a practical guide (Reprinted, pp. 370). The Oily Press. https:// doi.org/10.1093/clinchem/35.9.2021.

Das, U. N. (2006). Essential fatty acids: Biochemistry, physiology and pathology. Biotechnology Journal, 1(4), 420–439. https://doi.org/10.1002/biot.200600012.

Ercan, L. (2021). Su Teresi (Nasturtium officinale) Bitkisinin Antioksidan Kapasitesinin Belirlenmesi [Doktora Tezi]. Dicle Üniversitesi, Fen Bilmleri Enstitüsü, 139p.

Erzen, B. (2014). Kimyasal Olarak Sentezlenen Bazı Benzofuran Sübstitüe Α-Β Doymamış Keton Türevlerinin Biyolojik Etkilerinin Araştırılması. Fırat Üniversitesi Fen Bilimleri Enstitüsü, 121p.

Gözükara, E. (2001). Biyokimya (Vol. 1, pp. 248–258). Nobel Tıp Kitabevleri. Hara, A., & Radin, N. S. (1978). Lipid extraction of tissues with a low-toxicity solvent. Analytical Biochemistry, 90, 420–426. https://doi.org/10.1016/0003-2697(78)90046-5.

Harold, H., Leslie, C., & David, H. (2007). Organic chemistry: A short course (pp. 33–40). Houghton Mifflin Company. https://doi.org/10.1021/ed076p1341.1.

Jeon, J., Bong, S. J., Park, J. S., Park, Y. K., Arasu, M. V., Al-Dhabi, N. A., & Park, S. U. (2017). De novo transcriptome analysis and glucosinolate profiling in watercress (Nasturtium officinale R.Br.). BMC Genomics, 18(1), 401. https://doi.org/10.1186/ s12864-017-3792-5.

Karpińska, J., Mikołuć, B., Motkowski, R., & Piotrowska-Jastrzębska, J. (2006). HPLC method for simultaneous determination of retinol, α-tocopherol and coenzyme Q10 in human plasma. Journal of Pharmaceutical and Biomedical Analysis, 42(2), 232–236. https://doi. org/10.1016/j.jpba.2006.03.037.

Katsanidis, E., & Addis, P. B. (1999). Novel HPLC analysis of tocopherols, tocotrienols, and cholesterol in tissue. Free Radical Biology and Medicine, 27(11–12), 1137–1140. https://doi.org/10.1016/s0891-5849(99)00205-1.

Khan, S., Haque, M. M., Arakawa, O., & Onoue, Y. (1998). The influence of nitrogen and phosphorus on the growth of diatom Skeletonema costatum (Greville) Cleve. Journal Profile: Bangladesh Journal of Fisheries Research, 2(1), 23–29.

Leonard, A. E., Pereira, S. L., Sprecher, H., & Huang, Y. S. (2004). Elongation of long-chain fatty acids. Progress in Lipid Research, 43(1), 36–54. https://doi.org/10.1016/s0163- 7827(03)00040-7.

Leskanıch, C. O., & Noble, R. C. (1997). Manipulation of the n-3 polyunsaturated fatty acid composition of eggs and meat. Word’s Poultry Science, 53(2), 155–183. https://doi. org/10.1079/wps19970015.

Liu, R. H. (2003). Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. The American Journal of Clinical Nutrition, 78(3 Suppl), 517S–520S. https://doi.org/10.1093/ajcn/78.3.517s.

López-Cervantes, J., Sánchez-Machado, D. I., & Ríos-Vázquez, N. J. (2006). High-performance liquid chromatography method for the simultaneous quantification of retinol, alpha-tocopherol, and cholesterol in shrimp waste hydrolysate. Chromatography, 1105(1–2), 135–139. https://doi.org/10.1016/j.chroma.2005.08.010.

Monographie. (1989). Monographie BGA/BfArM Kommission D 1989 (146th ed.). German.

Morales, P., Carvalho, A. M., Sánchez-Mata, M. C., Cámara, M., Molina, M., & Ferreira, I. C. F. R. (2012). Tocopherol composition and antioxidant activity of Spanish wild vegetables. Genetic Resources and Crop Evolution, 59, 851–863. https://doi.org/10.1007/s10722-011-9726-1.

Moser, B. R., Shah, S. N., Winkler-Moser, J. K., Vaughn, S. F., & Evangelista, R. L. (2009). Composition and physical properties of cress (Lepidium sativum L.) and field pennycress (Thlaspi arvense L.) oils. Industrial Crops and Products, 30(2), 199–205. https://doi.org/10.1016/j. indcrop.2009.03.007.

Panayotova, V., & Stancheva, M. (2013). Fat soluble vitamins and fatty acids composition of Black Sea Cystoseira barbata. In: Paper presented at the CBU International conference on integration and innovation in science and education, Prague, Czech Republic. https://doi. org/10.12955/cbup.2013.58.

Qian, Y., Hibbert, L. E., Milner, S., Katz, E., Kliebenstein, D. J., & Taylor, G. (2022). Improved yield and health benefits of watercress grown in an indoor vertical farm. Scientia Horticulturae, 300, 111068. https://doi.org/10.1016/j. scienta.2022.111068.

Santos, M. A. Z., Colepicolo, P., Pupo, D., Fujii, M. T., de Pereira, C. M. P., & Mesko, M. F. (2017). Antarctic red macroalgae: A source of polyunsaturated fatty acids. Journal of Applied Phycology, 29(2), 759–767. https://doi.org/10.1007/ s10811-016-1034-x.

Suroowan, S., & Mahomoodally, M. F. (2016). A comparative ethnopharmacological analysis of traditional medicine used against respiratory tract diseases in Mauritius. Journal of Ethnopharmacology, 177, 61–80. https://doi. org/10.1016/j.jep.2015.11.029.

Teixidor-Toneu, I., Martin, G. J., Ouhammou, A., Puri, R. K., & Hawkins, J. A. (2016). An ethnomedicinal survey of a Tashelhit-speaking community in the high atlas, Morocco. Journal of Ethnopharmacology, 188, 96–110. https://doi.org/10.1016/j.jep.2016.05.009.

Turan, H., Erkoyuncu, İ., & Kocatepe, D. (2013). Omega-6, Omega-3 Yað Asitleri ve Balık. Yunus Araştırma Bülteni, 2, 45–50. https://doi.org/10.17693/yunusae. v2013i21905.235422 URL, 1. https://www.efsa.europa.eu/[Accessed 25 May 2024] URL, 2. https://ec.europa.eu [Accessed 25 May 2024].

Wassell, P., Bonwick, G., Smith, C. J., Almiron‐Roig, E., & Young, N. W. G. (2010). Towards a multidisciplinary approach to structuring in reduced saturated fat‐based systems – A review. International Journal of Food Science & Technology, 45(4), 642–655. https://doi.org/10.1111/ j.1365-2621.2010.02212.x.

Yehuda, H., Soroka, Y., Zlotkin-Frušić, M., Gilhar, A., Milner, Y., & Tamir, S. (2012). Isothiocyanates inhibit psoriasis-related proinflammatory factors in human skin. Inflammation Research, 61(7), 735–742. https://doi.org/10.1007/s00011- 012-0465-3.

Zafar, R., Zahoor, M., Shah, A. B., & Majid, F. (2017). Determination of antioxidants and antibacterial activities, total phenolic, polyphenol and pigment contents in Nasturtium officinale. Pharmacology & Therapeutics, 1, 11–18.

Downloads

Published

2025-04-15

How to Cite

Bulut, H., & Yılmaz, S. M. (2025). An alternative plant for sustainable future: some biochemical properties of watercress (Nasturtium officinale R.Br.). Oceanological and Hydrobiological Studies, 54(1), 1–9. https://doi.org/10.26881/oahs-2025.1.01

Issue

Section

Articles