Evaluation of three common methods of bulk lipid quantification in soft tissues of marine benthic invertebrates

Authors

  • Adam Sokołowski University of Gdansk
  • Kaja Czajkowska University of Gdansk

DOI:

https://doi.org/10.26881/oahs-2025.1.16

Keywords:

bulk lipid determination methods, efficiency, labour-effectiveness, marine benthic invertebrates

Abstract

Different analytical methods are used in biochemical laboratories to quantify lipid content in marine organisms, but the comparative utility of these protocols has not been assessed yet. This study evaluated three common methods of bulk lipid determination in the soft tissues of macrobenthic invertebrates in terms of their yield and labour intensity: the gravimetric method and two colourimetric methods of Marsh and Weinstein (1966) and Frings and Dunn (1970). Lipids were first extracted from three macrofaunal species, which were sampled in the coastal zone of the Gulf of Gdańsk (southern Baltic Sea): mussel Mytilus trossulus, shrimp Crangon crangon and polychaete Hediste diversicolor, using the Bligh and Dyer extraction technique (Bligh & Dyer, 1959). All tested methods proved accurate, precise and reproducible but differed in validation parameters and workload. The Marsh and Weinstein method provided an analytical procedure of the highest precision and recovery, the lowest limit of detection; however, it was laborious. The gravimetric method was the least labour-intensive but had the poorest validation parameters. The Frings and Dunn method produced more reliable results than the gravimetric method, but was the most time-consuming.

Downloads

Download data is not yet available.

References

Abele, D., & Puntarulo, S. (2004). Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 138(4), 405–415. https://doi.org/10.1016/j. cbpb.2004.05.013.

Acevedo-Whitehouse, K., & Duffus, A. L. J. (2009). Effects of environmental change on wildlife health. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1534), 3429–3438. https://doi.org/10.1098/ rstb.2009.0128.

Anglade, I., Dahl, T. H., Kristensen, B. S. B., Hagemann, A., Malzahn, A. M., & Reitan, K. I. (2023). Biochemical composition of Hediste diversicolor (OF Müller, 1776) (Annelida: Nereidae) reared on different types of aquaculture sludge. Frontiers in Marine Science, 10, 1197052. https://doi.org/10.3389/ fmars.2023.1197052.

Araujo, P. (2009). Key aspects of analytical method validation and linearity evaluation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 877(23), 2224–2234. https://doi.org/10.1016/j. jchromb.2008.09.030.

Barthel, D. (1986). On the ecophysiology of the sponge Halichondria panicea in Kiel Bight. I. Substrate specificity, growth and reproduction. Marine Ecology Progress Series, 32(1/2), 291–298. https://doi.org/10.3354/meps032291.

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917. https://doi. org/10.1139/o59-099.

Christian, G. D. (2009). Herramientas y operaciones básicas de la química analítica. In G. D. Christian (Ed.), Química Analítica (pp. 20–64). McGraw-Hill Education. (in Spanish).

da Costa, F., Nóvoa, S., Ojea, J., & Martínez-Patiño, D. (2013). Biochemical and fatty acid dynamics during larval development in the razor clam Ensis arcuatus (Bivalvia: Pharidae). Aquaculture Research, 44(12), 1926–1939. https://doi.org/10.1111/j.1365-2109.2012.03197.x.

da Silva-Castiglioni, D., Oliveira, G. T., & Buckup, L. (2010). Metabolic responses of Parastacus defossus and Parastacus brasiliensis (Crustacea, Decapoda, Parastacidae) to hypoxia. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 156(4), 436–444. https:// doi.org/10.1016/j.cbpa.2010.03.025.

Dong-Young, L., Jung Hyun, K., Tae Hee, P., Hee Yoon, K., Dongyoung, K., Sungmin, H., & Hyun Je, P. (2022). Seasonal variations in biochemical and stable isotope compositions of particulate organic matter in two contrasting temperate coastal lagoons of Korea. Frontiers in Marine Science, 9, 953648. https://doi.org/10.3389/fmars.2022.953648.

Friedrich, C., & Hagen, W. (1994). Lipid contents of five species of notothenioid fish from high-Antarctic waters and ecological implications. Polar Biology, 14, 359–369. https:// doi.org/10.1007/BF00240256.

Frings, C. S., & Dunn, R. T. (1970). A colorimetric method for determination of total serum lipids based on the sulfo-phospho-vanillin reaction. American Journal of Clinical Pathology, 53(1), 89–91. https://doi.org/10.1093/ ajcp/53.1.89.

García-Alonso, J., Müller, C. T., & Hardege, J. D. (2008). Influence of food regimes and seasonality on fatty acid composition in the ragworm. Aquatic Biology, 4(1), 7–13. https://doi. org/10.3354/ab00090.

Gardner, W. S., Frez, W. A., Cichocki, E. A., & Parrish, C. C. (1985). Micromethod for lipids in aquatic invertebrates. Limnology and Oceanography, 30(5), 1099–1105. https:// doi.org/10.4319/lo.1985.30.5.1099.

González, F. J. E., Hernández Torres, M. E., Frenich, A. G., Martínez Vidal, J. L., & Campaña, A. M. G. (2004). Internal qualitycontrol and laboratory-management tools for enhancing the stability of results in pesticide multi-residue analytical methods. Trends in Analytical Chemistry, 23(5), 361–369. https://doi.org/10.1016/S0165-9936(04)00520-5.

Gora, A., Jayasankar, V., Rehman, S., Kizhakudan, J. K., Laxmilatha, P., & Vijayagopal, P. (2018). Biochemical responses of juvenile rock spiny lobster Panulirus homarus under different feeding regimes. Journal of Applied Animal Research, 46(1), 1462–1468. https://doi.org/10.1080/0971 2119.2018.1533475.

Graham, Z. A., de Jesus Florentino, J., Smithers, S. P., Menezes, J. C. T., de Carvalho, J. E., & Palaoro, A. V. (2024). Claw coloration in the fiddler crab Leptuca uruguayensis has no correlation with male quality. Current Zoology, 71(1), 109–123. https://doi.org/10.1093/cz/zoae035.

Harvey, D. (2000). The language of analytical chemistry. In D. Harvey (Ed.), Modern analytical chemistry (pp. 35–52). McGraw-Hill Higher Education.

Hines, A., Yeung, W. H., Craft, J., Brown, M., Kennedy, J., Bignell, J., Stentiford, G. D., & Viant, M. R. (2007). Comparison of histological, genetic, metabolomics, and lipid-based methods for sex determination in marine mussels. Analytical Biochemistry, 369(2), 175–186. https://doi. org/10.1016/j.ab.2007.06.008.

Imbs, A. B., Ermolenko, E. V., Grigorchuk, V. P., Sikorskaya, T. V., & Velansky, P. V. (2021). Current progress in lipidomics of marine invertebrates. Marine Drugs, 19(12), 660. https:// doi.org/10.3390/md19120660.

Inouye, L. S., & Lotufo, G. R. (2006). Comparison of macrogravimetric and micro-colorimetric lipid determination methods. Talanta, 70(3), 584–587. https://doi. org/10.1016/j.talanta.2006.01.024.

Jacobs, S. L., & Henry, R. J. (1962). Studies on the gravimetric determination of serum lipids. Clinica Chimica Acta, 7(2), 270–276. https://doi.org/10.1016/0009-8981(62)90020-7.

Koutsouveli, V., Balgoma, D., Checa, A., Hedeland, M., Riesgo, A., & Cárdenas, P. (2022). Oogenesis and lipid metabolism in the deep-sea sponge Phakellia ventilabrum (Linnaeus, 1767). Scientific Reports, 12(1), 6317. https://doi. org/10.1038/s41598-022-10058-6.

Lasota, R., Sokołowski, A., Smolarz, K., Sromek, L., & Dublinowska, M. (2018). Multimarker response to salinity stress in two estuarine bivalves of different genetic diversity: Mya arenaria and Limecola balthica from the Gulf of Gdańsk (southern Baltic Sea). Invertebrate Biology, 137(3), 250–263. https://doi.org/10.1111/ivb.12224.

Lee, R. F., Hagen, W., & Kattner, G. (2006). Lipid storage in marine zooplankton. Marine Ecology Progress Series, 307, 273–306. https://doi.org/10.3354/meps307273.

Lehtonen, K. K. (1996). Ecophysiology of the benthic amphipod Monoporeia affinis in an open-sea area of the northern Baltic Sea: Seasonal variations in body composition, with bioenergetic considerations. Marine Ecology Progress Series, 143, 87–98. https://doi.org/10.3354/meps143087.

Lehtonen, K. K. (2004). Seasonal variations in the physiological condition of the benthic amphipods Monoporeia affinis and Pontoporeia femorata in the Gulf of Riga (Baltic Sea). Aquatic Ecology, 38(3), 441–456. https://doi.org/10.1023/ B:AECO.0000035165.97619.78.

Lehtonen, K. K., & Andersin, A. B. (1998). Population dynamics, response to sedimentation and role in benthic metabolism of the amphipod Monoporeia affinis in an open-sea area of the northern Baltic Sea. Marine Ecology Progress Series, 168, 71–85. https://doi.org/10.3354/meps168071.

Lordan, R., Tsoupras, A., & Zabetakis, I. (2017). Phospholipids of animal and marine origin: Structure, function, and antiinflammatory properties. Molecules, 22(11), 1964. https:// doi.org/10.3390/molecules22111964.

Marshall, C. T., Yaragina, N. A., Adlandsvik, B., & Dolgov, A. V. (2000). Reconstructing the stock-recruit relationship for Northeast Arctic cod using a bioenergetic index of reproductive potential. Canadian Journal of Fisheries and Aquatic Sciences, 57 (12), 2433–2442. https://doi.org/10.1139/f00-222.

Marsh, J. B., & Weinstein, D. B. (1966). Simple charring method for determination of lipids. Journal of Lipid Research, 7(4), 574–576. https://doi.org/10.1016/s0022-2275(20)39274-9.

Martínez-Pita, I., Sánchez-Lazo, C., Ruíz-Jarabo, I., Herrera, M., & Mancera, J. M. (2012). Biochemical composition, lipid classes, fatty acids and sexual hormones in the mussel Mytilus galloprovincialis from cultivated populations in south Spain. Aquaculture, 35(8–359), 274–283. https://doi.org/10.1016/j. aquaculture.2012.06.003.

Mika, A., Golbiowski, M., Skorkowski, E. F., & Stepnowski, P. (2012). Composition of fatty acids and sterols composition in brown shrimp Crangon crangon and herring Clupea harengus membras from the Baltic Sea. Oceanological and Hydrobiological Studies, 41(2), 57–64. https://doi. org/10.2478/s13545-012-0017-z.

Moore, J. W. (1976). The proximate and fatty acid composition of some estuarine crustaceans. Estuarine and Coastal Marine Science, 4(2), 215–224. https://doi.org/10.1016/0302- 3524(76)90043-8.

Naeun, J., Seok-Hyun, Y., HuiTae, J., Hyo Keun, J., Yejin, K., Sanghoon, O., Jaesoon, K., Kwanwoo, K., Jae Joong, K., & Sang Heon, L. (2022). Seasonal variations in biochemical (biomolecular and amino acid) compositions and protein quality of particulate organic matter in the Southwestern East/Japan Sea. Frontiers in Marine Science, 9, 979137. https://doi.org/10.3389/fmars.2022.979137.

Nielsen, D., Hyldig, G., Nielsen, J., & Nielsen, H. H. (2005). Lipid content in herring (Clupea harengus L.) - Influence of biological factors and comparison of different methods of analyses: Solvent extraction, Fatmeter, NIR and NMR. LWT - Food Science and Technology, 38(5), 537–548. https://doi. org/10.1016/j.lwt.2004.07.010.

Parrish, C. C. (1987). Separation of aquatic lipid classes by Chromarod thin-layer chromatography with measurement by Iatroscan flame ionization detection. Canadian Journal of Fisheries and Aquatic Sciences, 44(4), 722–731. https:// doi.org/10.1139/f87-087.

Parrish, C. C. (2013). Lipids in marine ecosystems. International Scholarly Research Notices, 604045, 16. https://doi. org/10.5402/2013/604045.

Parrish, C. C. (2025). Production, transport, fate and effects of lipids in the marine environment. Marine Drugs, 23(2), 52. https://doi.org/10.3390/md23020052.

Peters, J., Renz, J., Van Beusekom, J., Boersma, M., & Hagen, W. (2006). Trophodynamics and seasonal cycle of the copepod Pseudocalanus acuspes in the Central Baltic Sea (Bornholm Basin): Evidence from lipid composition. Marine Biology, 149(6), 1417–1429. https://doi.org/10.1007/s00227-006- 0290-8.

Prato, E., Biandolino, F., Parlapiano, I., Giandomenico, S., Denti, G., Calò, M., Spada, L., & Di Leo, A. (2019). Proximate, fatty acids and metals in edible marine bivalves from Italian market: Beneficial and risk for consumers health. Science of the Total Environment, 648(6), 153–163. https://doi. org/10.1016/j.scitotenv.2018.07.382.

Pusceddu, A., Dell’Anno, A., Fabiano, M., & Danovaro, R. (2009). Quantity and bioavailability of sediment organic matter as signatures of benthic trophic status. Marine Ecology Progress Series, 5, 41–52. https://doi.org/10.3354/ meps07735.

Reinhardt, S. B., & Van Vleet, E. S. (1986). Lipid composition of twenty-two species of Antarctic midwater zooplankton and fish. Marine Biology, 91, 149–159. https://doi. org/10.1007/BF00569431.

Reisenbichler, K. R., & Bailey, T. G. (1991). Microextraction of total lipid from mesopelagic animals. Deep Sea Research Part A. Oceanographic Research Papers, 38(10), 1331–1339. https://doi.org/10.1016/0198-0149(91)90030-J.

Ridgway, N., & McLeod, R. (2016). Biochemistry of lipids, lipoproteins and membranes (6th ed.). Elsevier.

Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (2013). Random errors in chemical analysis. In D. A. Skoog, D. M. West, F. J. Holler, & S. R. Crouch (Eds.), Fundamental of analytical chemistry (pp. 93–122). Cengage Learning.

Sokołowski, A., Wołowicz, M., & Hummel, H. (2003). Free amino acids in the clam Macoma balthica L. (Bivalvia, Mollusca) from brackish waters of the southern Baltic Sea. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 134(3), 579–592. https://doi.org/10.1016/S1095- 6433(02)00360-4.

Sokołowski, A., Ziółkowska, M., Balazy, P., Plichta, I., Kukliński, P., & Mudrak-Cegiołka, S. (2017). Recruitment pattern of benthic fauna on artificial substrates in brackish lowdiversity system (the Baltic Sea). Hydrobiologia, 784(1), 125–141. https://doi.org/10.1007/s10750-016-2862-z.

Stefanov, K. L., Christie, W. W., Brechany, E. Y., Popov, S. S., & Andreev, S. N. (1992). Lipid composition of the red and green forms of Actina equinia from the black sea. Comparative Biochemistry and Physiology. Part B, Biochemistry, 103(3), 687–690. https://doi.org/10.1016/0305-0491(92)90391-4.

Stelzer, P. S., Mazzuco, A. C. A., Gomes, L. E., Martins, J., Netto, S., & Bernardino, A. F. (2021). Taxonomic and functional diversity of benthic macrofauna associated with rhodolith beds in SE Brazil. PeerJ, 9, e11903. https://doi.org/10.7717/ peerj.11903.

Sukhotin, A. A., Lajus, D. L., & Lesin, P. A. (2003). Influence of age and size on pumping activity and stress resistance in the marine bivalve Mytilus edulis L. The Journal of Experimental Marine Biology and Ecology, 284(1-2), 129–144. https://doi. org/10.1016/S0022-0981(02)00497-5.

Szaniawska, A. (1983). Seasonal changes in energy content of Crangon crangon L. (Crustacea, Decapoda). Polish Archives of Hydrobiology, 30(1), 45–56.

Taverniers, I., De Loose, M., & Van Bockstaele, E. (2004). Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. Trends in Analytical Chemistry, 23(8), 535–552. https://doi.org/10.1016/j. trac.2004.04.001.

Taylor, J. (2022). An introduction to error analysis: The study of uncertainties in physical measurements (3rd. ed.). University Science Books.

Wang, H., Seekamp, I., Malzahn, A., Hagemann, A., Carvajal, A. K., Slizyte, R., Standal, I. B., Handå, A., & Reitan, K. I. (2019). Growth and nutritional composition of the polychaete Hediste diversicolor (OF Müller, 1776) cultivated on waste from landbased salmon SMOLT aquaculture. Aquaculture, 502(15), 232–241. https://doi.org/10.1016/j.aquaculture.2018.12.047.

Webster, G. K., Kotts, L., & Maloney, T. D. (2005). Considerations when implementing automated methods into GXP laboratories. Journal of Laboratory Automation, 10(3), 182–191. https://doi.org/10.1016/j.jala.2005.03.003.

Wiklund, A. K. E., Dahlgren, K., Sundelin, B., & Andersson, A. (2009). Effects of warming and shifts of pelagic food web structure on benthic productivity in a coastal marine system. Marine Ecology Progress Series, 396, 13–25. https:// doi.org/10.3354/meps08290.

Wołowicz, M., Sokołowski, A., Bawazir, A. S., & Lasota, R. (2006). Effect of eutrophication on the distribution and ecophysiology of the mussel Mytilus trossulus (Bivalvia) in southern Baltic Sea (the Gulf of Gdańsk). Limnology and Oceanography, 51(1, part 2), 580–590. https://doi. org/10.4319/lo.2006.51.1_part_2.0580.

Downloads

Published

2025-09-19

How to Cite

Sokołowski, A., & Czajkowska, K. (2025). Evaluation of three common methods of bulk lipid quantification in soft tissues of marine benthic invertebrates. Oceanological and Hydrobiological Studies, 54(3), 160–170. https://doi.org/10.26881/oahs-2025.1.16

Issue

Section

Articles

Most read articles by the same author(s)