Effects of diet quantity on growth performance of juvenile sea cucumbers Holothuria scabra

Authors

  • Mamdouh Al-Harbi King Abdulaziz University

DOI:

https://doi.org/10.26881/oandhs-2022.2.04

Keywords:

aquaculture, invertebrate culture, echinoderms, feed formulation, sandfish, Red Sea

Abstract

Sea cucumbers are in high demand in the world market due to their nutritional and medicinal values. In this study, the growth performance of juvenile sea cucumbers Holothuria scabra fed with different proportions of two feeds was analyzed. Commercially available sea cucumber feed (feed-A) and formulated feed (feed-B) were used for the experiments. Animals fed with 2% feed-A showed a negative growth rate. Maximum growth was observed in animals fed with 8% feed-A and feed-B. While feed-A treated groups showed significant variation (P < 0.05) in growth performance between different percentages of diets, feed-B treated animals showed no such variation. Feed-B treated animals showed higher growth rates compared to feed-A treated sea cucumbers. Water quality parameters and anoxic conditions of the soil in culture tanks did not change due to the higher percentage of feeds. In conclusion, this study showed that diet percentage is an important factor for the optimum growth of sea cucumbers.

Downloads

Download data is not yet available.

References

Agudo, N. (2006). Sandfish Hatchery Techniques. WorldFish. Altamirano, J. P., & Noran-Baylon, R. D. (2020). Nursery culture of sandfish Holothuria scabra in sea-based floating hapa nets: Effects of initial stocking density, size grading and net replacement frequency. Aquaculture (Amsterdam, Netherlands), 526, 735379. https://doi.org/10.1016/j. aquaculture.2020.735379.

Asha, P. S., & Muthiah, P. (2005). Effects of temperature, salinity and pH on larval growth, survival and development of the sea cucumber Holothuria spinifera Theel. Aquaculture (Amsterdam, Netherlands), 250(3-4), 823–829. https://doi.org/10.1016/j.aquaculture.2005.04.075.

Axler, R., Larsen, C., Tikkanen, C., McDonald, M., Yokom, S., & Aas, P. (1996). Water quality issues associated with aquaculture: A case study in mine pit lakes. Water Environment Research, 68(6), 995–1011. https://doi.org/10.2175/106143096X128027.

Battaglene, S.C. (1999). Culture of tropical sea cucumbers for stock restoration and enhancement. Naga, ICLARM. Q. 22, 4 – 10.

Broom, M., Gabr, M. H., Al-Harbi, M., & Satheesh, S. (2021a). Effect of different diets on growth of the sub-adult sea cucumber Holothuria scabra. Aquaculture International, 29(6), 2403–2414. https://doi.org/10.1007/s10499-021- 00756-9.

Broom, M., Gabr, M. H., Al-Harbi, M., & Satheesh, S. (2021b). Effect of feeding regime and stocking density on the growth performance of sea cucumber Holothuria scabra. Egyptian Journal of Aquatic Biology and Fisheries, 25(3), 635–646. https://doi.org/10.21608/ejabf.2021.179978.

Cárcamo, P. F. (2015). Effects of food type and feeding frequency on the performance of early juveniles of the sea urchin Loxechinus albus (Echinodermata: Echinoidea): implications for aquaculture and restocking. Aquaculture (Amsterdam, Netherlands), 436, 172–178. https://doi. org/10.1016/j.aquaculture.2014.10.045.

Floren, A. S., Hayashizaki, K. I., Putchakarn, S., Tuntiprapas, P., & Prathep, A. (2021). A review of factors influencing the seagrass-sea cucumber association in tropical seagrass meadows. Frontiers in Marine Science, 8, 696134. Advance online publication. https://doi.org/10.3389/ fmars.2021.696134.

Giraspy, D. A. B., & Ivy, G. (2008). The influence of commercial diets on growth and survival in the commercially important sea cucumber Holothuria scabra var. versicolor (Conand, 1986)(Echinodermata: Holothuroidea). SPC beche-de-mer Information Bulletin 28:46-52. https://api.semanticscholar. org/CorpusID:83324577.

Giraspy, D.A.B. & Walsalam, L.G. (2010). Aquaculture potential of the tropical sea cucumbers Holothuria scabra and H. lessoni in the Indo-Pacific region. SPC Beche-de-mer Information Bulletin, No.30.

Gorospe, J. C., Juinio-Meñez, M. A., & Southgate, P. C. (2019). Effects of shading on periphyton characteristics and performance of sandfish, Holothuria scabra Jaeger 1833, juveniles. Aquaculture (Amsterdam, Netherlands), 512, 734307. https://doi.org/10.1016/j. aquaculture.2019.734307.

Hair, C. (2012). Sandfish (Holothuria scabra) production and searanching trial in Fiji. In Asia–Pacific tropical sea cucumber aquaculture. ACIAR Proceedings, Australian Center for International Agricultural Research 136: 129-141. https://core.ac.uk/download/pdf/11533869.pdf#page=130.

Hamel, J. F., Conand, C., Pawson, D. L., & Mercier, A. (2001). The sea cucumber Holothuria scabra (Holothuroidea: Echinodermata): its biology and exploitation as bechedemer. Advances in Marine Biology, 41, 129–223. https://doi.org/10.1016/S0065-2881(01)41003-0.

Hamel, J. F., & Mercier, A. (2004). Synchronous gamete maturation and reliable spawning induction method in holothurians. In A. Lovatelli, C. Conand, S. Purcell, S. Uthicke, J-F. Hamel, & A. Mercier (Eds.). Advances in sea cucumber aquaculture and management (pp 425). FAO Fisheries Technical Reports No. 463, FAO, Rome.

Indriana, L. F., Firdaus, M., M., Supono., & Munandar, H. (2017). Survival rate and growth of juvenile sandfish (Holothuria scabra) in various rearing conditions. Marine Research in Indonesia, 42(1), 11–18. https://doi.org/10.14203/mri. v42i1.156.

James, D. B., Gandhi, A. D., Palaniswamy, N., & Rodrigo, J. X. (1994). Hatchery techniques and culture of sea cucumber Holothuria scabra. Central Marine Fisheries Research Institute, Cochin, India. Special Publication, 57, 1–40. http:// eprints.cmfri.org.in/3452/1/Special_Publication_No_57. pdf.

James, D. B. (1999). Hatchery and culture technology for the sea cucumber, Holothuria scabra Jaeger, in India. Naga – The ICLARM Quarterly. 22:12–16. https://core.ac.uk/ download/pdf/11023765.pdf.

Kang, K. H., Kwon, J. Y., & Kim, Y. M. (2003). A beneficial coculture: Charm abalone Haliotis discus hannai and sea cucumber Stichopus japonicus. Aquaculture (Amsterdam, Netherlands), 216(1-4), 87–93. https://doi.org/10.1016/ S0044-8486(02)00203-X.

Lane, D. J., & Limbong, D. (2015). Catastrophic depletion of reef‐associated sea cucumbers: Resource management/ reef resilience issues for an Indonesian marine park and the wider Indo‐Pacific. Aquatic Conservation, 25(4), 505– 517. https://doi.org/10.1002/aqc.2421.

Liao, M. L., Ren, T. J., He, L. J., Jiang, Z. Q., & Han, Y. Z. (2014). Optimum dietary protein level for growth and coelomic fluid non-specific immune enzymes of sea cucumber Apostichopus japonicus juvenile. Aquaculture Nutrition, 20(4), 443–450. https://doi.org/10.1111/anu.12098.

Liao, M., Ren, T., He, L., Han, Y., & Jiang, Z. (2015). Optimum dietary proportion of soybean meal with fish meal, and its effects on growth, digestibility, and digestive enzyme activity of juvenile sea cucumber Apostichopus japonicus. Fisheries Science, 81, 915–922. https://doi.org/10.1007/s12562-015-0916-1.

Liu, Y., Dong, S., Tian, X., Wang, F., & Gao, Q. (2010). The effect of different macroalgae on the growth of sea cucumbers (Apostichopus japonicus Selenka). Aquaculture Research, 41(11), e881–e885. https://doi.org/10.1111/j.1365-2109.2010.02582.x.

Magcanta, M. L. M., Sornito, M. B., Espadero, A. D. A., Bacosa, H. P., & Uy, W. H. (2021). Growth, Survival, and Behavior of Early Juvenile Sandfish Holothuria scabra (Jaeger, 1883) in Response to Feed Types and Salinity Levels under Laboratory Conditions. Philippine Journal of Science, 150(5), 871–884.

Militz, T. A., Leini, E., Duy, N. D. Q., & Southgate, P. C. (2018). Successful large-scale hatchery culture of sandfish (Holothuria scabra) using micro-algae concentrates as a larval food source. Aquaculture Reports, 9, 25–30. https:// doi.org/10.1016/j.aqrep.2017.11.005.

Pitt, R., & Duy, N. D. Q. (2004). Breeding and rearing of the sea cucumber Holothuria scabra in Viet Nam. In A. Lovatelli, C. Conand, S. Purcell, S. Uthicke, J-F. Hamel, & A. Mercier (Eds.). Advances in Sea Cucumber Aquaculture and Management (pp. 333–46.).

FAO Fisheries Technical Paper No. 463. FAO, Rome.

Purcell, S. W., Hair, C. A., & Mills, D. J. (2012). Sea cucumber culture, farming and sea ranching in the tropics: Progress, problems and opportunities. Aquaculture (Amsterdam, Netherlands), 368–369, 68–81. https://doi.org/10.1016/j.aquaculture.2012.08.053.

Purcell, S. W. (2014). Value, market preferences and trade of Beche-de-mer from Pacific Island sea cucumbers. PLoS One, 9, e95075. https://doi.org/10.1371/journal.pone.0095075 PMID:24736374.

Purcell, S. W., & Kirby, D. S. (2006). Restocking the sea cucumber Holothuria scabra: Sizing no-take zones through individual-based movement modelling. Fisheries Research, 80(1), 53–61. https://doi.org/10.1016/j.fishres.2006.03.020.

Qin, C., Dong, S., Tan, F., Tian, X., Wang, F., Dong, Y., & Gao, Q. (2009). Optimization of stocking density for the sea cucumber, Apostichopus japonicus Selenka under feedsupplement and non-feed-supplement regimes in pond culture. Journal of Ocean University of China, 8(3), 296–302. https://link.springer.com/article/10.1007/s11802-009- 0296-1 https://doi.org/10.1007/s11802-009-0296-1.

Raison, C. M. (2008). Advances in sea cucumber aquaculture and prospects for commercial culture of Holothuria scabra. Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 3(082), 1–15. https://doi.org/10.1079/ PAVSNNR20083082.

Ramofafia, C., Gervis, M., & Bell, J. (1995). Spawning and early larval rearing of Holothuria atra. SPC beche-de-mer Information Bulletin, 7, 2–7.

Roberts, R. D., Lapworth, C., & Barker, R. J. (2001). Effect of starvation on the growth and survival of postlarval abalone (Haliotis iris). Aquaculture (Amsterdam, Netherlands), 200(3-4), 323–338. https://doi.org/10.1016/S0044-8486(01)00531-2 .

Robinson, G., Caldwell, G. S., Jones, C. L., Slater, M. J., & Stead, S. M. (2015). Redox stratification drives enhanced growth in a deposit-feeding invertebrate: Implications for aquaculture bioremediation. Aquaculture Environment Interactions, 8, 1–3. https://doi.org/10.3354/aei00158.

Robinson, G., Caldwell, G. S., Wade, M. J., Free, A., Jones, C. L. W., & Stead, S. M. (2016). Profiling bacterial communities associated with sediment-based aquaculture bioremediation systems under contrasting redox regimes. Scientific Reports, 6, 38850. https://doi.org/10.1038/srep38850 PMID:27941918.

Seeruttun, R., Appadoo, C., Laxminaraya, A., & Codabaccus, B. (2008). A study on the factors influencing the growth and survival of juvenile sea cucumber, Holothuria atra, under laboratory conditions. University of Mauritius Research Journal, 14(1), 1–15. https://www.ajol.info/index.php/umrj/article/view/130811.

Seo, J. Y., & Lee, S. M. (2011). Optimum dietary protein and lipid levels for growth of juvenile sea cucumber Apostichopus japonicus. Aquaculture Nutrition, 17(2), e56–e61. https:// doi.org/10.1111/j.1365-2095.2009.00728.x.

Singh, R., MacDonald, B. A., Lawton, P., & Thomas, M. L. (1998). Feeding response of the dendrochirote sea cucumber Cucumaria frondosa (Echinodermata: Holothuroidea) to changing food concentrations in the laboratory. Canadian Journal of Zoology, 76(10), 1842–1849. https://doi. org/10.1139/z98-133.

Slater, M. J., Jeffs, A. G., & Carton, A. G. (2009). The use of the waste from green-lipped mussels as a food source for juvenile sea cucumber, Australostichopus mollis. Aquaculture (Amsterdam, Netherlands), 292(3-4), 219–224. https://doi.org/10.1016/j.aquaculture.2009.04.027.

Uthicke, S., & Klumpp, D. W. (1998). Microphytobenthos community production at a near-shore coral reef: Seasonal variation and response to ammonium recycled by holothurians. Marine Ecology Progress Series, 169, 1–11. https://doi.org/10.3354/meps169001.

Wang, Y., Kong, L.-J., Li, K., & Bureau, D. P. (2007). Effects of feeding frequency and ration level on growth, feed utilization and nitrogen waste output of cuneate drum (Nibea miichthioides) reared in net pens. Aquaculture (Amsterdam, Netherlands), 271(1-4), 350–356. https://doi. org/10.1016/j.aquaculture.2007.03.022.

Xia, B., Ren, Y., Wang, J., Sun, Y., & Zhang, Z. (2017). Effects of feeding frequency and density on growth, energy budget and physiological performance of sea cucumber Apostichopus japonicus (Selenka). Aquaculture (Amsterdam, Netherlands), 466, 26–32. https://doi.org/10.1016/j. aquaculture.2016.09.039.

Yasoda, H. N., Chi, Z., & Ling, Z. K. (2006). Probiotics and sea cucumber farming. SPC Beche-de-mer Information Bulletin No.24.

Yuan, X., Yang, H., Zhou, Y., Mao, Y., Zhang, T., & Liu, Y. (2006). The influence of diets containing dried bivalve feces and/ or powdered algae on growth and energy distribution in sea cucumber, Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea). Aquaculture (Amsterdam, Netherlands), 256(1-4), 457–467. https://doi.org/10.1016/j.aquaculture.2006.01.029.

Zheng, H., Ke, C., Zhou, S., & Li, F. (2005). Effects of starvation on larval growth, survival and metamorphosis of Ivory shell Babylonia formosae habei Altena et al., 1981 (Neogastropoda: Buccinidae). Aquaculture (Amsterdam, Netherlands), 243(1-4), 357–366. https://doi.org/10.1016/j. aquaculture.2004.10.010.

Downloads

Published

2022-06-30

How to Cite

Al-Harbi, M. (2022). Effects of diet quantity on growth performance of juvenile sea cucumbers Holothuria scabra. Oceanological and Hydrobiological Studies, 51(2), 158–166. https://doi.org/10.26881/oandhs-2022.2.04

Issue

Section

Articles