How do mussel provenance and spat size affect mussel aquaculture performance in the South-Western Mediterranean (Algeria)?

Authors

  • Imene Belgaid University of Sciences and Technology Houari Boumedienne
  • Lamri Nacef University of Science and Technology Houari Boumediene
  • Zakia Alioua University of Science and Technology Houari Boumediene
  • Nour-El-Islam Bachari University of Science and Technology Houari Boumediene

DOI:

https://doi.org/10.26881/oahs-2022.3.01

Keywords:

Mediterranean mussel, farming, production, recruitment, Algeria

Abstract

The objective of this research was to study the effects of size and spat origin of farmed Mytilus galloprovinciallis in mussel longlines in the east of Bou-Ismail Bay (central coastal Algeria, south-western Mediterranean). The study was conducted from October 2017 to July 2020 in the east of Bou-Ismail Bay. The mussel spat were obtained from four origin sites (Tlemcen, Tenes, Ain Tagourait and the study site) and were seeded on three spat sizes (10–30, 30–60 and >60 mm). The production performance of this species was analysed on 284 random mussel plots using average physical product (APP), gain and loss rates, condition index (CI), percentage of edibility (PE) and shell thickness index (STI). Apart from the CI and loss rate, the performance indicators showed significant differences according to spat size and source (p < 0.05). Overall, the highest APP (4.3) was recorded for the small seeded mussels (10–30) mm and for those originating from Tlemcen, near finfish cages (APP = 4.14). These individuals exhibited more efficient growth and physiology for commercial size and performed better than the spat collected at the study site. The results can be considered a valid contribution to best farming practice for optimising the production of this species in Algeria. It also contributes to the development of integrated multitrophic aquaculture (IMTA) methodology, which is suitable for use in the oligotrophic Western Mediterranean.

Downloads

Download data is not yet available.

References

Alunno-Bruscia, M., Bourget, E., & Frechette, M. (2001). Shell allometry and length-mass-density relationship for Mytilus edulis in an experimental food-regulated situation. Marine Ecology Progress Series, 219(September), 177–188. https://doi.org/10.3354/meps219177

Amarouche, K., Bachari, N. E. I., Houma, F., & Boughrira, A. (2018). Development of a numerical code to simulate the hydrodynamic energy potential, applied at Bou Ismail bay Development of a numerical code to simulate the hydrodynamic energy potential, applied at Bou Ismail bay. Energies Renouvelables, 20 N°3(March), 377–388. https://www.asjp.cerist.dz/en/downArticle/401/20/3/121694

Andral, B., Stanisiere, J. Y., Sauzade, D., Damier, E., Thebault, H., Galgani, F., & Boissery, P. (2004). Monitoring chemical contamination levels in the Mediterranean based on the use of mussel caging. Marine Pollution Bulletin, 49(9-10), 704-712. https://doi.org/10.1016/j.marpolbul.2004.05.008 PMID:15530513

Asche, F., Roll, K. H., & Tveteras, R. (2012). Innovations and Productivity Performance in Salmon Aquaculture d the Innovation System in Salmon. In J. Frick & B. T. Laugen (Eds.), IFIP International Federation for Information Processing (pp. 620–627). Stavanger, Norway: Springer; https://doi.org/10.1007/978-3-642-33980-6_66

Babarro, J. M. F., & De Zwaan, A. (2008). Anaerobic survival potential of four bivalves from different habitats. A comparative survey. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 151(1), 108–113. https://doi.org/10.1016/j.cbpa.2008.06.006 PMID:18593601

Bayne, B., & Worrall, C. (1980). Growth and Production of Mussels Mytilus edulis from Two Populations. Marine Ecology Progress Series, 3(December), 317–328. https://doi.org/10.3354/meps003317

Beadman, H. A., Caldow, R. W., Kaiser, M. J., & Willows, R. (2003). How to toughen up your mussels : Using mussel shell morphological plasticity to reduce predation losses. Marine Biology, 142(3), 487–494. https://doi.org/10.1007/s00227-002-0977-4

Biandolino, F., Parlapiano, I., Grattagliano, A., Fanelli, G., & Prato, E. (2020). Comparative characteristics of percentage edibility, condition index, biochemical constituents and lipids nutritional quality indices of wild and farmed scallops (Flexopecten Glaber). Water (Basel), 12(6), 1777–1789. https://doi.org/10.3390/w12061777

Bonardelli, J. C., Kokaine, L., Ozolina, Z., & Aigars, J. (2019). Technical evaluation of submerged mussel farms in the Baltic sea.

Calderwood, J., O’Connor, N. E. O., Sigwart, J. D., & Roberts, D. (2014). Determining optimal duration of seed translocation periods for benthic mussel (Mytilus edulis) cultivation using physiological and behavioural measures of stress. Aquaculture (Amsterdam, Netherlands), 434, 288–295. https://doi.org/10.1016/j.aquaculture.2014.08.023

Calderwood, J., O’Connor, N. E., & Roberts, D. (2015). The effects of transportation stress and barnacle fouling on predation rates of starfish (Asterias rubens) on mussels (Mytilus edulis). Aquaculture (Amsterdam, Netherlands), 444, 108–113. https://doi.org/10.1016/j.aquaculture.2015.02.038

Camacho, A. P., Labarta, U., & Beiras, R. (1995). Growth of mussels (Mytilus edulis galloprovincialis) on cultivation rafts: Influence of seed source, cultivation site and phytoplankton availability. Aquaculture (Amsterdam, Netherlands), 138(1–4), 349–362. https://doi.org/10.1016/0044-8486(95)01139-0

Capelle, J. J., Wijsman, J. W. M., Van Stralen, M. R., Herman, P. M. J., & Smaal, A. C. (2016). Effect of seeding density on biomass production in mussel bottom culture. Journal of Sea Research, 110, 8–15. https://doi.org/10.1016/j. seares.2016.02.001

Carton, A. G., Jeffs, A. G., Foote, G., Palmer, H., & Bilton, J. (2007). Evaluation of methods for assessing the retention of seed mussels (Perna canaliculus) prior to seeding for growout. Aquaculture (Amsterdam, Netherlands), 262, 521–527. https://doi.org/10.1016/j.aquaculture.2006.11.026

Celik, M. Y., Karayücel, S., & Karayücel, Ý. (2009). Effects of environmental factors on growth and mortality of raft cultivated mussel (Mytilus galloprovincialis) cultivated in lantern nets in Black Sea. AACL Bioflux, Aquaculture, Aquarium. Conservation & Legislation International Journal of the Bioflux Society, 2(2), 97–108.

Chatzivasileiou, D., Dimitriou, P. D., Theodorou, J., Kalantzi, I., Magiopoulos, I., Papageorgiou, N., Pitta, P., Tsapakis, M., & Karakassis, I. (2022). An IMTA in Greece: Co‐Culture of Fish, Bivalves, and Holothurians. Journal of Marine Science and Engineering, 10(6), 776-791. Advance online publication. https://doi.org/10.3390/jmse10060776

Cherifi, H., Chebil Ajjabi, L., & Sadok, S. (2018). Nutritional value of the Tunisian mussel Mytilus galloprovincialis with a special emphasis on lipid quality. Food Chemistry, 268(June), 307–314. https://doi.org/10.1016/j.foodchem.2018.06.075 PMID:30064763

Clarke, M. (1999). The effect of food availability on byssogenesis by the zebra mussel (Dreissena polymorpha). The Journal of Molluscan Studies, 65(3), 327–333. https://doi.org/10.1093/mollus/65.3.327

Cubillo, A. M., Peteiro, L. G., Fernández-reiriz, M. J., & Labarta, U. (2012a). Influence of stocking density on growth of mussels (Mytilus galloprovincialis) in suspended culture. Aquaculture, 342–343(b), 103–111. https://doi.org/10.1016/j.aquaculture.2012.02.017

Cubillo, A. M., Peteiro, L. G., Fernández-Reiriz, M. J., & Labarta, U. (2012b). Density-dependent effects on morphological plasticity of Mytilus gallloprovincialis in suspended culture. Aquaculture (Amsterdam, Netherlands), 338–341, 246–252. https://doi.org/10.1016/j.aquaculture.2012.01.028

Dimitriou, P. D., Karakassis, I., Pitta, P., Tsagaraki, T. M., Apostolaki, E. T., Magiopoulos, I., Nikolioudakis, N., Diliberto, S., Theodorou, J. A., Tzovenis, I., Kagalou, I., Beza, P., & Tsapakis, M. (2015). Mussel farming in Maliakos Gulf and quality indicators of the marine environment: Good benthic below poor pelagic ecological status. Marine Pollution Bulletin, 101(2), 784–793. https://doi.org/10.1016/j.marpolbul.2015.09.035 PMID:26478459

Drapeau, A., Comeau, L. A., Landry, T., Stryhn, H., & Davidson, J. (2006). Association between longline design and mussel productivity in Prince Edward Island, Canada. Aquaculture (Amsterdam, Netherlands), 261(3), 879–889. https://doi.org/10.1016/j.aquaculture.2006.07.045

Dridi, S., Romdhane, M. S., & Elcafsi, M. (2007). Seasonal variation in weight and biochemical composition of the Pacific oyster, Crassostrea gigas in relation to the gametogenic cycle and environmental conditions of the Bizert lagoon, Tunisia. Aquaculture (Amsterdam, Netherlands), 263(1–4), 238–248. https://doi.org/10.1016/j.aquaculture.2006.10.028

FAO. (2016). The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all. https://doi.org/http://www.fao.org/3/i5555e/i5555e.pdf

FAO. (2020). FAO. 2020. La situation mondiale des pêches et de l’aquaculture 2020. La durabilité en action. Rome. https://doi.org/https://doi.org/10.4060/ca9229fr

Fernández-Reiriz, M. J., Irisarri, J., & Labarta, U. (2016). Flexibility of Physiological Traits Underlying Inter-Individual Growth Differences in Intertidal and Subtidal Mussels Mytilus galloprovincialis. PLoS One, 11(2), e0148245. https://doi.org/10.1371/journal.pone.0148245 PMID:26849372

Fernandez-Reiriz, M. J., Labarta, U., & Babarro, J. M. F. (1996). Comparative allometries in growth and chemical composition of mussel (Mytilus galloprovincialis) cultured in two zones in the ria Sada (Galicia, NW Spain). Journal of Shellfish Research, 15(2), 349–353. Retrieved from https://digital.csic.es/handle/10261/61211

Ferreira, J. G., Hawkins, A. J. S., & Bricker, S. B. (2007a). Management of productivity, environmental effects and profitability of shellfish aquaculture - the Farm Aquaculture Resource Management (FARM) model. Aquaculture (Amsterdam, Netherlands), 264(1–4), 160–174. https://doi.org/10.1016/j.aquaculture.2006.12.017

Ferreira, J., Hawkins, A., Monteiro, P., Service, M., Moore, H., Edwards, A., Gowen, R., Lourenco, P., Mellor, A., Nunes, J., Pascoe, P., Ramos, L., Sequira, A., Simas, T., & Strong, J. (2007b). SMILE - Sustainable Mariculture in northern Irish Lough Ecosystems. Assessment of Carrying Capacity for Environmentally Sustainable Shellfish Culture in Carlingford Lough, Strangford Lough, Belfast Lough, Larne Lough and Lough Foyle. In Ed. IMAR - Institute of Marine Research. http://medcontent.metapress.com/index/A65RM03P4874243N.pdf

Filgueira, R., Labarta, U., & Fernández-reiriz, M. J. (2008). Effect of condition index on allometric relationships of clearance rate in Mytilus galloprovincialis Lamarck, 1819. Revista de Biología Marina y Oceanografía, 43(2), 391–398. https://doi.org/10.4067/S0718-19572008000200015

Freeman, A. S., & Byers, J. E. (2006). Divergent induced responses to an invasive predator in marine mussel populations. Science, 313(5788), 831–833. https://doi.org/10.1126/science.1125485 PMID:16902136

Freeman, A. S., Meszaros, J., & Byers, J. E. (2009). Poor phenotypic integration of blue mussel inducible defenses in environments with multiple predators. Oikos, 118(5), 758–766. https://doi.org/10.1111/j.1600- 0706.2008.17176.x

Fuentes-Santos, I., Cubillo, A. M., & Labarta, U. (2015). A bioeconomic approach to optimize mussel culture production. Reviews in Aquaculture, 9(2), 125–140. https://doi.org/10.1111/raq.12108

Fuentes, A., Fernández-Segovia, I., Escriche, I., & Serra, J. A. (2009). Comparison of physico-chemical parameters and composition of mussels (Mytilus galloprovincialis) from different Spanish origins. Food Chemistry, 112(2), 295–302. https://doi.org/10.1016/j.foodchem.2008.05.064

Fuentes, J., Gregorio, V., Giraldez, R., & Molares, J. (2000). Within-raft variability of the growth rate of mussels, Mytilus galloprovincialis, cultivated in the Ria de Arousa (NW Spain). Aquaculture (Amsterdam, Netherlands), 189, 39–52. https://doi.org/10.1016/S0044-8486(00)00357-4

Guillou, E., Cyr, C., Laplante, J. F., Bourque, F., Toupoint, N., & Tremblay, R. (2020). Commercial performance of blue mussel (Mytilus edulis) Stocks at a microgeographic scale. Journal of Marine Science and Engineering, 8(6), 382-401. https://doi.org/10.3390/jmse8060382

Hatzonikolakis, Y., Tsiaras, K., Theodorou, J. A., Petihakis, G., Sofianos, S., & Triantafyllou, G. (2017). Simulation of mussel Mytilus galloprovincialis growth with a dynamic Energy budget model in Maliakos and Thermaikos Gulfs (Eastern mediterranean). Aquaculture Environment Interactions, 9(September), 371–383. https://doi.org/10.3354/aei00236

Houma. (2009). Modélisation et cartographie de la pollution marine et de la bathymétrie à partir de l’imagerie satellitaire. [Paris Est]. https://www.theses.fr/2009PEST0065

Idhalla, M., Nhhala, H., Kassila, J., Ait Chatou, E. M., Orbi, A., & Moukrim, A. (2017). Comparative production of two mussel species (Perna perna and Mytilus galloprovincialis) reared on an offshore submerged longline system in Agadir, Morocco. International Journal of Scientific and Engineering Research, 8(6), 1203–1213. Retrieved from http://www.ijser.org

Jenewein, B. T., & Gosselin, L. A. (2013). Ontogenetic shift in stress tolerance thresholds of Mytilus trossulus : Effects of desiccation and heat on juvenile mortality. Marine Ecology Progress Series, 481, 147–159. https://doi.org/10.3354/meps10221

Karayücel, S., & Karayücel, I. (2000). The effect of environmental factors, depth and position on the growth and mortality of raft-cultured blue mussels (Mytilus edulis). Aquaculture Research, 31(12), 893–899. https://doi.org/10.1046/j.1365-2109.2000.00496.x

Laama, C., & Bachari, N. E. I. (2018). Evaluation of site suitability for the expansion of mussel farming in the Bay of Souahlia (Algeria) using empirical models. Journal of Applied Aquaculture, 31(4), 337–355. https://doi.org/10.1080/10454438.2018.1556145

Lagade, V. M., Taware, S., & Muley, D. (2015). Seasonal Variation in the Biochemical Constituents, Percentage Edibility and Condition Index of the Estuarine Clam, Soletellina diphos (Linnaeus, 1771) (Mollusca : Bivalvia : Veneroida: Psammobiidae). International Journal of Zoological Research, 11(4), 127–139. https://doi.org/10.3923/ijzr.2015.127.139

Landmann, J., Ongsiek, T., Goseberg, N., Heasman, K., Buck, B. H., Paffenholz, J. A., & Hildebrandt, A. (2019). Physical modelling of blue mussel dropper lines for the development of surrogates and hydrodynamic coefficients. Journal of Marine Science and Engineering, 7(3), 65-80. https://doi.org/10.3390/jmse7030065

Lauzon-Guay, J.-S., Dionne, M., Barbeau, M. A., & Hamilton, D. J. (2005). Effects of seed size and density on growth, tissueto-shell ratio and survival of cultivated mussels (Mytilus edulis) in Prince Edward Island, Canada. Aquaculture (Amsterdam, Netherlands), 250, 652–665. https://doi.org/10.1016/j.aquaculture.2005.03.049

Lök, A., Acarlι, S., Serdar, S., Köse, A., & Yιldιz, H. (2007). Growth and mortality of Mediterranean mussel Mytilus galloprovincialis Lam., 1819, in relation to size on longline in Mersin Bay, Izmir (Turkey – Aegean Sea). Aquaculture Research, 38(8), 819–826. https://doi.org/10.1111/j.1365-2109.2007.01717.x

Lourguioui, H., Brigolin, D., Boulahdid, M., & Pastres, R. (2017). A perspective for reducing environmental impacts of mussel culture in Algeria. The International Journal of Life Cycle Assessment, 22(8), 1266–1277. https://doi.org/10.1007/s11367-017-1261-7

Martinez, M., Mangano, M. C., Maricchiolo, G., Genovese, L., Mazzola, A., & Sarà, G. (2018). Measuring the e ff ects of temperature rise on Mediterranean shell fish aquaculture. Ecological Indicators, 88(December 2017), 71–78. https://doi.org/10.1016/j.ecolind.2018.01.002

Mohite, S. A., Mohite, A. S., & Singh, H. (2008). On conditio index and percentage edibiliy of the shortneck clam Paphia malabarica (Chemintz) from estuarine regions of Ratnagiri, west coast of India. Aquaculture Research, 40(1),69–73. https://doi.org/10.1111/j.1365-2109.2008.02064.x

MPRH. (2008). Schéma Directeur de développement des activités de la pêche et de l’aquaculture, Horizon 2025. (Ministère de la Pêche et des Ressources Halieutiques (ed.)). http://www.mpeche.gov.dz

Navarro, E., Iglesias, J. I. P., Perez Camacho, A., Labarta, U., & Beiras, R. (1991). The physiological energetics of mussels (Mytilus galloprovincialis) from different cultivation rafts in the Ria de Arosa (Galicia, N.W. Spain). Aquaculture (Amsterdam, Netherlands), 94(2-3), 197–212. https://doi.org/10.1016/0044-8486(91)90118-Q

Okumuş, I., & Stirling, H. P. (1998). Seasonal variations in the meat weight, condition index and biochemical composition of mussels (Mytilus edulis) in suspended culture in two Scottish sea lochs. Aquaculture (Amsterdam, Netherlands), 159(3–4), 249–261. https://doi.org/10.1016/S0044-8486(97)00206-8

Pace, D. A., Marsh, A. G., Leong, P. K., Green, A. J., Hedgecock, D., & Manahan, D. T. (2006). Physiological bases of genetically determined variation in growth of marine invertebrate larvae : A study of growth heterosis in the bivalve Crassostrea gigas. Journal of Experimental Marine Biology and Ecology, 335(2), 188–209. https://doi.org/10.1016/j.jembe.2006.03.005

Pérez-Camacho, A., Labarta, U., Vinseiro, V., & Fernándezreiriz, M. J. (2013). Mussel production management : Raft culture without thinning-out. Aquaculture (Amsterdam, Netherlands), 406–407, 172–179. https://doi.org/10.1016/j.aquaculture.2013.05.019

Petersen, J. K., Taylor, D., Bergström, P., Buer, A.-L., Darecki, M., Filippelli, R., Gren, I.-M., Hasler, B., Holbach, A., Nielsen, P., Petersen, L. K., Lindegarth, M., Lund, I., Maar, M., Ritzenhofen, L., Sagan, S., Saurel, C., Schernewski, G., Stybel, N., & Timmermann, K. (2020). Policy guidelines for implementation of mussel cultivation as a mitigation measure for coastal eutrophication in the Western Baltic Sea. In DTU Aqua Report (Vol. 362, Issue April). https://doi.org/10.11581/dtu:00000079

Petraitis, P. S. (1995). The role of growth in maintaining spatial dominance by mussels (Mytilus edulis). Ecology, 76(4), 1337–1346. https://doi.org/10.2307/1940940

Phillips, N. E. (2002). Effects of nutrition-mediated larval condition on juvenile performance in a marine mussel. Ecology, 83(9), 2562–2574. https://doi.org/10.1890/0012-9658(2002)083[2562:EONMLC]2.0.CO;2

Prato, E., Biandolino, F., Parlapiano, I., Papa, L., Denti, G., & Fanelli, G. (2019). Seasonal changes of commercial traits, proximate and fatty acid compositions of the scallop Flexopecten glaber from the Mediterranean Sea (Southern Italy). PeerJ, 7(1), e5810. https://doi.org/10.7717/peerj.5810 PMID:30693150

Prieto, D., Tamayo, D., Urrutxurtu, I., Navarro, E., Ibarrola, I., & Urrutia, M. B. (2020). Nature more than nurture affects the growth rate of mussels. Scientific Reports, 10 (1), 3539. https://doi.org/10.1038/s41598-020-60312-y PMID:32103079

Prieto, D., Urrutxurtu, I., Navarro, E., Urrutia, M. B., & Ibarrola, I. (2018). Mytilus galloprovincialis fast growing phenotypes under different restrictive feeding conditions: Fast feeders and energy savers. Marine Environmental Research, 140(May), 114–125. https://doi.org/10.1016/j.marenvres.2018.05.007 PMID:29907318

Raman-Nair, W., & Colbourne, B. (2003). Dynamics of a mussel longline system. Aquacultural Engineering, 27, 191–212. https://doi.org/10.1016/S0144-8609(02)00083-3

Seed, R. (1969). The ecology of Mytilus edulis. (Lamellibranchiata) on exposed rocky shores : I. Breeding and settlement. Oecologia, 3(3-4), 277–316. https://doi.org/10.1007/BF00390380 PMID:28308905

Sim-Smith, C. (2006). Greenshell mussels : Solving the case of the disappearing spat. Water and Atmosphere, 14(3), 16–17.

Simon, A., Fraïsse, C., El Ayari, T., Liautard-Haag, C., Strelkov, P., Welch, J. J., & Bierne, N. (2021). How do species barriers decay? Concordance and local introgression in mosaic hybrid zones of mussels. Journal of Evolutionary Biology, 34(1), 208–223. https://doi.org/10.1111/jeb.13709 PMID:33045123

South, P. M., Floerl, O., & Jeffs, A. G. (2020). Magnitude and timing of seed losses in mussel (Perna canaliculus) aquaculture. Aquaculture (Amsterdam, Netherlands), 515, 734528. https://doi.org/10.1016/j.aquaculture.2019.734528

Steffani, C. N., & Branch, G. M. (2003, January). Growth rate, condition, and shell shape of Mytilus galloprovincialis : Responses to wave exposure. Marine Ecology Progress Series, 246, 197–209. https://doi.org/10.3354/meps246197

Strohmeier, T., Duinker, A., Strand, Ø., & Aure, J. (2008). Temporal and spatial variation in food availability and meat ratio in a longline mussel farm (Mytilus edulis). Aquaculture (Amsterdam, Netherlands), 276(1–4), 83–90. https://doi.org/10.1016/j.aquaculture.2008.01.043

Supono, S., Dunphy, B., & Jeffs, A. (2020). Retention of greenlipped mussel spat : The roles of body size and nutritional condition. Aquaculture (Amsterdam, Netherlands), 520(January), 735017. https://doi.org/10.1016/j.aquaculture.2020.735017

Tamayo, D., Ibarrola, I., Urrutia, M. B., & Navarro, E. (2011). The physiological basis for inter-individual growth variability in the spat of clams (Ruditapes philippinarum). Aquaculture (Amsterdam, Netherlands), 321(1–2), 113–120. https://doi.org/10.1016/j.aquaculture.2011.08.024

Theodorou, J. A., Tzovenis, I., Adams, C. M., Sorgeloos, P., & Viaene, J. (2014). Risk Factors Affecting the Profitability of the Mediterranean Mussel (Mytilus galloprovincialis Lamarck 1819) Farming in Greece. Journal of Shellfish Research, 33(3), 695–708. https://doi.org/10.2983/035.033.0304

Theodorou, J. A., James, R., Tagalis, D., Tzovenis, I., Hellio, C., & Katselis, G. (2017). Density and size structure of the endangered fan mussel Pinna nobilis (Linnaeus 1758), in the shallow water zone of Maliakos Gulf, Greece. Acta Adriatica, 58(1), 63–76. https://doi.org/10.32582/aa.58.1.5

Theodorou, J. A., & Tzovenis, I. (2018). Managing the risks of the Greek crisis in aquaculture: A SWOT analysis of the mediterranean mussel farming. Agricultural Economics Review, 18(2), 18–29.

Theodorou, J. A., Leech, B. S., Perdikaris, C., Hellio, C., & Katselis, G. (2019). Performance of the cultured Mediterranean mussel Mytilus galloprovincialis (Lamark 1819) after summer post-harvest re- immersion. Turkish Journal of Fisheries and Aquatic Sciences, 19(3); Advance online publication. https://doi.org/10.4194/1303-2712-v19_3_05

Theodorou, J. A., Moutopoulos, D. K., & Tzovenis, I. (2020). Semi-quantitative risk assessment of Mediterranean mussel (Mytilus galloprovincialis L.) harvesting bans due to harmful algal bloom (HAB) incidents in Greece. Aquaculture Economics & Management, 24(3), 273–293. https://doi.org/10.1080/13657305.2019.1708994

Theodorou, J. A., Tzovenis, I., & Katselis, G. (2021). Empirical approach to risk management strategies of Mediterranean mussel farmers in Greece. Oceanological and Hydrobiological Studies, 50(4), 455–472. https://doi.org/10.2478/oandhs-2021-0039

Valladares, A., Manríquez, G., & Suárez-Isla, B. A. (2010). Shell shape variation in populations of Mytilus chilensis (Hupe 1854) from southern Chile : A geometric morphometric approach. Marine Biology, 157(12), 2731–2738. https://doi.org/10.1007/s00227-010-1532-3

Waite, L., Grant, J., & Davidson, J. (2005, August). Bay-scale spatial growth variation of mussels Mytilus edulis in suspended culture, Prince Edward Island, Canada. Marine Ecology Progress Series, 297, 157–167. https://doi.org/10.3354/meps297157

Wang, M., Shi, W., & Jiang, L. (2012). Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region. Optics Express, 20(2), 741–753. https://doi.org/10.1364/OE.20.000741 PMID:22274419

Webb, S. C., & Heasman, K. G. (2006). Evaluation of fast green uptake as a simple fitness test for spat of Perna canaliculus (Gmelin, 1791). Aquaculture (Amsterdam, Netherlands), 252(2-4), 305–316. https://doi.org/10.1016/j.aquaculture.2005.07.006

Wenne, R., Zbawicka, M., Prądzińska, A., Kotta, J., Herkül, K., Gardner, J. P. A., Apostolidis, A. P., Poćwierz-Kotus, A., Rouane-Hacene, O., Korrida, A., Dondero, F., Baptista, M., Reizopoulou, S., Hamer, B., Sundsaasen, K. K., Árnyasi, M., & Kent, M. P. (2022). Molecular genetic differentiation of native populations of Mediterranean blue mussels, Mytilus galloprovincialis Lamarck, 1819, and the relationship with environmental variables. The European Zoological Journal, 89(1), 755–784. https://doi.org/10.1080/24750263.2022.2086306

Wijsman, J. W. M., Schellekens, T., Van Stralen, M., Capelle, J. J., & Smaal, A. C. (2014). Rendement van mosselkweek in de westelijke Waddenzee [Efficiency of mussel culture in the western Wadden Sea]. IMARES, Wageningen UR, Yerseke.

Downloads

Published

2022-09-28

How to Cite

Belgaid, I. ., Nacef, L., Alioua, Z., & Bachari, . N.-E.-I. (2022). How do mussel provenance and spat size affect mussel aquaculture performance in the South-Western Mediterranean (Algeria)?. Oceanological and Hydrobiological Studies, 51(3), 239–256. https://doi.org/10.26881/oahs-2022.3.01

Issue

Section

Articles