Heavy metal accumulation in a bioindicator species, Limpet Patella caerulea, in Yalova (İzmit Bay): Risk assessment for human health

Authors

  • Saniye Türk Çulha Izmir Katip Çelebi University
  • Görkem Dalkıran Department of Agriculture and Rural Development
  • Nesrin Horzum Izmir Katip Çelebi University

DOI:

https://doi.org/10.26881/oahs-2022.3.02

Keywords:

bioaccumulation, limpet, target hazard quotient (THQ), carcinogenic risk (CR), Marmara Sea

Abstract

In this study, monthly heavy metal concentrations in the whole-body tissue of Patella caerulea (Mediterranean limpets), a bioindicator species living in the coastal zone of the Gulf of Izmit (Marmara Sea), were examined for the first time. The mean metal concentrations in Patella caerulea (mg kg-1 dw) were 2.01–5.74 Cd, 2.45–12.90 Cu, 0.74–1.95 Pb, 21.12–109.57 Zn, 16.31–154.67 Ni, and 1120.67–3086.00 Fe. Cd levels in all months and Pb levels in October and November were found to be above the safe limits set by international organizations. The estimated daily intakes and estimated weekly intakes determined for each heavy metal were below the acceptable daily intakes and provisional tolerable weekly intakes. However, the target hazard quotient and total target hazard quotient values calculated for Cd, Ni, and Fe were found to be higher than 1. The carcinogenic risk value was also found to be high.

Downloads

Download data is not yet available.

References

Abdallah, M. A. M. (2013). Bioaccumulation of heavy metals in mollusca species and assessment of potential risks to human health. Bulletin of Environmental Contamination and Toxicology, 90, 552–557. https://doi.org/10.1007/s00128-013-0959-x PMID:23377776

Afonso, C., Costa, S., Cardoso, C., Oliveira, R., Lourenço, H. M., Viula, A., Batista, I., Coelho, I., & Nunes, M. L. (2015). Benefits and risks associated with consumption of raw, cooked, and canned tuna (Thunnus spp.) based on the bioaccessibility of selenium and methylmercury. Environmental Research, 143, 130–137. https://doi.org/10.1016/j.envres.2015.04.019 PMID:25962922

Akşit, D., & Mutaf, B. F. (2007). Gill histology of Patella Linneaus, 1758 (Mollusca: Gastropoda). CIESM Congress 2007 Rapp Comm Int Mer Medit. 38.

Akşit, D., & Mutaf, B. F. (2011). The external morphology of the gill of Patella caerulea L. (Mollusca: Gastropoda). Turkish Journal of Zoology, 35(4), 603–606. https://doi.org/10.3906/zoo-0907-82

Altuğ, G., Çardak, M., Çiftci-Türetken, P. S., & Gürün, S. (2009). An important water route between Mediterranean and Black seas and bacterial pollution (Canakkale and Istanbul Straits, Turkey). Proceedings of the 3rd WSEAS Internatinoal Conference on Waste Management Water Pollution Air Pollution Indoor Climate. Tenerife Spain 01-03 July 466–468.

Ayas, D. (2010). Distribution and Morphometric Characteristics of Patella species (Archaeogastropoda) in MersinViranşehir Region of the Northeastern Mediterranean Sea. Journal of Fisheries Science, 4, 171–176. https://doi.org/10.3153/jfscom.2010017

Ayas, D., Kalay, M., & Sangün, M. K. (2009). Determinate of Cr, Cd and Pb levels in Surface Water and Patella Species (Patella caerulea, Patella rustica) collected from Mersin Bay. Ekoloji, 18(70), 32–37. https://doi.org/10.5053/ekoloji.2009.705

Aydın-Önen, S., & Öztürk, M. (2017). Investigation of heavy metal pollution in eastern Aegean Sea coastal waters by using Cystoseira barbata, Patella caerulea, and Liza aurata as biological indicators. Environmental Science and Pollution Research International, 24, 7310–7334. https://doi.org/10.1007/s11356-016-8226-4 PMID:28105592

Aydın, M., Şahin, A., & Karadurmuş, U. (2021). Some biological parameters of Patella caerulea from the Black Sea. Marine Science and Technology Bulletin, 10(4), 396–405. https://doi.org/10.33714/masteb.906225

Bat, L., Yardim, Ö., Arici, E., & Öztekin, A. (2015). Current status of heavy metals in soft tissues of the limpet Patella caerulea (Linnaeus, 1758) from Sinop coast of the Black Sea. Pakistan Journal of Marine Sciences, 24(1-2), 29–35.

Benkendorff, K. (2010). Molluscan biological and chemical diversity: Secondary metabolites and medicinal resources produced by marine molluscs. Biological Reviews of the Cambridge Philosophical Society, 85(4), 757–775. https://doi.org/10.1111/j.1469-185X.2010.00124.xPMID:20105155

Belkhodja, H. & Romdhane, M.S. (2013). Corallina sp. And Patella caerulea (Linnaeus, 1758) as quantitative biological indicators for trace metals in the Tunisian coastal waters. Rapp Comm Int Mer Mèdit 40.

Belkhodja, H., Missaoui, H.& Romdhane, M.S. (2010). The Limpet: Patella caerulea as biomonitors of the heavy metal levels in Tunisian North Coasts, Mediterranean Sea. Rapp Comm Int Mer Mèdit 39.

Bernhard, M. (1976). Manual of methods in aquatic environment research Part 3 Sampling and analysis of biological material. FAO Fish Technical Paper FIRI/T, Rome No.: 158

Boudouresque, C.F. (2004). Marine biodiversity in the Mediterranean: status of species, populations and communities. Travaux scientifiques du Parc national de Port-Cros, 20, 97-146.

Bordbar, L., Dassenakis, M., Catsiki, V. A., & Megalofonou, P. (2015). Influence of a ferronickel smelting plant activity on the coastal zone through investigation of metal bioaccumulation on two gastropod species (Patella caerulea and Phorcus turbinatus). J Journal of Environmental and Analytical Toxicology, S7, 002. https://doi.org/10.4172/2161-0525.S7-004.

Bu-Olayan, A. H., & Thomas, B. V. (2001). Heavy metal accumulation in the gastropod, Cerithium scabridum L., from the Kuwait Coast. Environmental Monitoring and Assessment, 68, 187–195. https://doi.org/10.1023/A:1010707826081 PMID:11411144

Brown, M. T., & Depledge, M. H. (1998). Determinants of trace metal concentrations in marine organisms. In W. J. Langston & M. J. Bebianno (Eds.), Metal Metabolism in Aquatic Environments. Springer., https://doi.org/10.1007/978-1-4757-2761-6_7

Campanella, L., Conti, M. E., Cubadda, F., & Sucapane, C. (2001). Trace metals in seagrass, algae and molluscs from an uncontaminated area in the Mediterranean. Environmental Pollution, 111, 117–126. https://doi.org/10.1016/S0269-7491(99)00327-9 PMID:11202705

Conti, M. E., & Cecchetti, G. (2003). A biomonitoring study: Trace metals in algae and molluscs from Tyrrhenian coastal areas. Environmental Research, 93, 99–112. https://doi.org/10.1016/S0013-9351(03)00012-4 PMID:12865053

Copat, C., Arena, G., Fiore, M., Ledda, C., Fallico, R., Sciacca, S., & Ferrante, M. (2013). Heavy metals concentrations in fish and shellfish from eastern Mediterranean Sea: Consumption advisories. Food and Chemical Toxicology, 53, 33–37. https://doi.org/10.1016/j.fct.2012.11.038 PMID:23211443

Cubadda, F., Conti, M. E., & Campanella, L. (2001). Sizedependent concentrations of trace metals in four Mediterranean gastropods. Chemosphere, 45, 561–569. https://doi.org/10.1016/S0045-6535(01)00013-3 PMID:11680752

Çulha, M., & Bat, L. (2010). Visible decline of limpet Patella caerulea Linnaeus, 1758, a biomonitor species, at the Sinop peninsula and vicinity (the Southern Black Sea, Turkey). Journal of Environmental Protection and Ecology, 11(3), 1024–1029.

Cravo, A., Bebianno, M. J., & Foster, P. (2004). Partitioning of trace metals between soft tissues and shells of Patella aspera. Environment International, 30(1), 87–98. https://doi.org/10.1016/S0160-4120(03)00154-5 PMID:14664868

De Wolf, H., Ulomi, S. A., Backeljau, T., Pratap, H. B., & Blust, R. (2001). Heavy metal levels in the sediments of four Dar es Salaam mangroves. Accumulation in, and effect on the morphology of the periwinkle, Littoraria scabra (Mollusca: Gastropoda). Environment International, 26(4), 243–249. https://doi.org/10.1016/S0160-4120(00)00113-6 PMID:11341292

Duysak, Ö., & Azdural, K. (2017). Evaluation of heavy metal and aluminium accumulation in a gastropod, Patella caerulea L., 1758 in Iskenderun Bay, Turkey. Pakistan Journal of Zoology, 49(2), 629–637. https://doi.org/10.17582/journal.pjz/2017.49.2.629.637

EU. (2008). Commission regulation No. 629/2008 of 2 July 2008 amending regulation (EC) No. 1881/2006 setting maximum levels for certain contaminants in foodstuffs. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008R0629&from=ES. Accessed 13 May 2022.

Ergül, H. A., & Karademir, A. (2020). A modeling approach on the PCDD/F pollution in surface sediments of the Izmit Bay (The Marmara Sea). Regional Studies in Marine Science, 35, 101195. https://doi.org/10.1016/j.rsma.2020.101195

FAO/WHO. (2004). Food and Agriculture Organization/World Health Organization, Summary and conclusions of the sixty-first meeting of the Joint FAO/WHO expert committee on food additives (JECFA). www.fao.org/3/a-at878e.pdf. Accessed 13 May 2022.

FAO/WHO. (2007). Evaluation of certain food additives and contaminants: sixty-seventh report of the Joint FAO/WHO (Food and Agriculture Organization/World Health Organization) Expert Committee on Food Additives. Geneva, World Health Organization (WHO Technical Report Series, No. 940) https://apps.who.int/iris/bitstream/handle/10665/43592/WHO_TRS_940_eng.pdf?sequence=1&isAllowed=y. Accessed 13 May 2022.

FAO/WHO. (2010). Joint FAO/WHO (Food and Agriculture Organization/World Health Organization) expert committee on food additives. Seventy-third meeting, Geneva, 8–17 June 2010. https://www.who.int/publications/i/item/9789241209601. Accessed 13 May 2022.

FDA. (2001). Fish and fisheries products hazards and controls guidance. Food and drug administration center for food safety and applied nutrition (3rd ed.). Department of Health and Human Services.

Fowler, S. W., & Oregioni, B. (1976). Trace metals in mussels from the N.W. Mediterranean. Marine Pollution Bulletin, 7, 26–29. https://doi.org/10.1016/0025-326X(76)90306-4

Fryer, M., Collins, C. D., Ferrier, H., Colvile, R. N., & Nieuwenhuijsen, M. J. (2006). Human exposure modeling for chemical risk assessment: A review of current approaches and research and policy implications. Environmental Science & Policy, 9, 261–274. https://doi.org/10.1016/j.envsci.2005.11.011

Gedik, K., & Eryaşar, A. R. (2020). Microplastic pollution profile of Mediterranean mussels (Mytilus galloprovincialis) collected along the Turkish coasts. Chemosphere, 260, 127570. https://doi.org/10.1016/j.chemosphere.2020.127570 PMID:32668364

Ghebreyesus, T. A. (2020). In: Wild, C. P., Weiderpass, E., & Stewart, B.W. (Eds.), World Cancer Report (pp. 115-126) International Agency for Research on Cancer (IARC).

Goyer, R., Mari, G., Harlal, C., Micheal, H., Elaine, K., & Marc, S. (2003). Issue papper on the Human Health Effects of Metals, U.S. Environmental Protection Agency (EPA). Risk Assessment Forum, 4, 23–28.

Guendouzi, Y., Soualili, D. L., Fowler, S. W., & Boulahdid, M. (2020). Environmental and human health risk assessment of trace metals in the mussel ecosystem from the Southwestern Mediterranean. Marine Pollution Bulletin, 151, 110820. https://doi.org/10.1016/j.marpolbul.2019.110820 PMID:32056613

Giusti, L., Williamson, A. C., & Mistry, A. (1999). Biologically available trace metals in Mytilus edulis from the coast of northeast England. Environment International, 25(8), 969–981. https://doi.org/10.1016/S0160-4120(99)00066-5

Hernandez, F., Pastor, A., Gisbert, M., Ansuategui, J., & Serrano, R. (1992). Biomonitoring of heavy metal distribution in the Western Mediterranean area (Spain). Marine Pollution Bulletin, 24, 512–515. https://doi.org/10.1016/0025-326X(92)90476-M

Hamed, M. A., & Emera, A. M. (2006). Marine molluscs as biomonitors for heavy metal levels in the Gulf of Suez, Red Sea. Journal of Marine Systems, 60, 220–234. https://doi.org/10.1016/j.jmarsys.2005.09.007

IARC. (2014). International Agency for Research on Cancer (IARC), World Cancer Report http://www.iarc.fr/en/publications/books/wcr/wcr-order.php

Javed, M., & Usmani, N. (2016). Accumulation of heavy metals and human health risk assessment via the consumption of freshwater fish Mastacembelus armatus inhabiting, thermal power plant effluent loaded canal. SpringerPlus, 5(1), 776. https://doi.org/10.1186/s40064-016-2471-3 PMID:27386262

Jezierska, B., & Witeska, M. (2006). The Metal Uptake And Accumulatıon in Fish Living in Polluted Waters. In: Twardowska I., Allen H.E., Häggblom M.M., Stefaniak S. (eds) Soil and Water Pollution Monitoring, Protection and Remediation. NATO Science Series, vol 69,107-114

Jović, M., & Stanković, S. (2014). Human exposure to trace metals and possible public health risks via consumption of mussels Mytilus galloprovincialis from the Adriatic coastal area. Food and Chemical Toxicology, 70, 241–251. https://doi.org/10.1016/j.fct.2014.05.012

Kelepertzis, E. (2013). Heavy metals baseline concentrationsin soft tissues of Patella sp. from the Stratoni coastal environment, NE Greece. Ecological Chemistry and Engineering. S, 20(1), 141–149. https://doi.org/10.2478/eces-2013-0011

Koide, M., Lee, D. S., & Goldberg, E. D. (1982). Metal and transuranic records in mussel shells, byssal threads and tissues. Estuarine, Coastal and Shelf Science, 15, 679–695. https://doi.org/10.1016/0272-7714(82)90079-8

Kontopoulos, G., Catsiki, V. A., & Rigas, F. (2003). Heavy metal distribution in coastal areas of Saronic Gulf with the aid of the biological indicators Patella sp. and Siphonaria sp. Proceedings of the 8th International Conference on Environmental Science and Technology Lemnos Island, Greece, 8-10 September Full paper Vol. A 493-500.

Kutluk, E. (2018). Environmental Effects of Traffic Load of Ships Passing through the Istanbul Strait: An Examination on the Ro-Ro Ships. [in Turkish with English summary]. Marmara University Journal of Political Science, 6(1), 285–310. https:// doi.org/10.14782/marusbd.412651

Küçükdermenci, A., Lök, A., Kırtık, A., & Kurtay, E. (2017). The meat yield variations of Patella caerulea (Linnaeus, 1758) in Urla, Izmir Bay. Acta Biologica Turcica, 30(4), 174–177.

Mol, S., & Alakavuk, D. Ü. (2011). Heavy metals in mussels (Mytilus galloprovincialis) from Marmara sea, Turkey. Biological Trace Element Research, 141, 184–191. https://doi.org/10.1007/s12011-010-8721-2 PMID:20490711

Mutlu, C., Şen, F., & Kalkan, S. (2021). Giresun Kıyı Şeridindeki Patella sp. nin Et Kalitesi Değişiminin Mevsimsel Olarak Belirlenmesi. [in Turkish with English summary]. Journal of Anatolian Environmental and Animal Sciences, 6(2), 261–265. https://doi.org/10.35229/jaes.897220

Nakhlé, K. F., Cossa, D., Khalaf, G., & Beliaeff, B. (2006). Brachidontes variabilis and Patella sp. as quantitative biological indicators for cadmium, lead and mercury in the Lebanese coastal waters. Environmental Pollution, 142(1), 73–82. https://doi.org/10.1016/j.envpol.2005.09.016 PMID:16343717

Nasreddine, L., Nashalian, O., Naja, F., Itani, L., Parent-Massin, D., Nabhani-Zeidan, M., & Hwalla, N. (2010). Dietary exposure to essential and toxic trace elements from a Total diet study in an adult Lebanese urban population. Food and Chemical Toxicology, 48, 1262–1269. https://di.org/10.1016/j.fct.2010.02.020 PMID:20176072

Öztürk, B., & Ergen, Z. (1996). The Patella species (Archaeogastropoda) distrusted in Saros Bay (North Egean Sea). [in Turkish with English summary]. Turkish Journal of Zoology, 23(2), 513–519.

Öztürk, M. (1994). Heavy metal levels in Patella coerulae L. And Enteremorpha linza (L.) J. Ag. collected from Sinop bay and harbour. [in Turkish with English summary]. Turkish Journal of Biology, 18, 195–211.

Phillips, D. J. H. (1977). The use of biological indicator organisms to monitör trace metal pollution in marine and estuarine environments—A review. Environmental Pollution, 13, 281–317. https://doi.org/10.1016/0013-9327(77)90047-7

Pekey, B., Bozkurt, Z. B., Pekey, H., Doğan, G., Zararsız, A., Efe, N., & Tuncel, G. (2010). Indoor/outdoor concentrations and elemental composition of PM10/PM2.5 in urban/ industrial areas of Kocaeli City, Turkey. Indoor Air, 20, 112–125. https://doi.org/10.1111/j.1600-0668.2009.00628.x PMID:20002793

Pekey, H., Karakaş, D., Ayberk, S., Tolun, L., & Bakoğlu, M. (2004). Ecological risk assessment using trace elements from surface sediments of Izmit Bay (Northeastern Marmara Sea) Turkey. Marine Pollution Bulletin, 48(9-10), 946–953. https://doi.org/10.1016/j.marpolbul.2003.11.023 PMID:15111042

Pérez, S., Sánchez-Marín, P., Bellas, J., Viñas, L., Besada, V., & Fernández, N. (2019). Limpets (Patella spp. Mollusca, Gastropoda) as model organisms for biomonitoring environmental quality. Ecological Indicators, 101, 150–162.https://doi.org/10.1016/j.ecolind.2019.01.016

Powell, M. I., & White, K. M. (1990). Heavy metal accumulation by barnacles and its implications for their use as biological monitors. Marine Environmental Research, 30, 91–118. https://doi.org/10.1016/0141-1136(90)90013-E

Ramelow, G. J. (1985). A study of heavy metals in limpets Patella sp. collected along a section of the Southeastern Turkish Mediterranean coast. Marine Environmental Research, 16(4), 243–253. https://doi.org/10.1016/0141-1136(85)90022-4

Ramírez, R. (2013). The gastropod Osilinusatrata as a bioindicator of Cd, Cu, Pb and Zn contamination in the coastal waters of the Canary Islands. Chemistry and Ecology, 29(3), 208–220. https://doi.org/10.1080/02757540.2012.735659

Ramos, M. A. (1998). Implementing the Habitats Directive for mollusc species in Spain. Journal of Conchology Special Publication, 2, 125–132.

Reguera, P., Couceiro, L., & Fernández, N. (2018). A review of the empirical literature on the use of limpets Patella spp. (Mollusca: Gastropoda) as bioindicators of environmental quality. Ecotoxicology and Environmental Safety, 148,593–600. https://doi.org/10.1016/j.ecoenv.2017.11.004 PMID:29127822

Saha, N., & Zaman, M. R. (2013). Evaluation of possible health risks of heavy metals by consumption of foodstuffs available in the central market of Rajshahi City, Bangladesh. Environmental Monitoring and Assessment, 185, 3867–3878. https://doi.org/10.1007/s10661-012-2835-2 PMID:22933105

Süren, E., Yilmaz, S., Türkoglu, M., & Kaya, S. (2007). Concentrations of cadmium and lead heavy metals in Dardanelles seawater. Environmental Monitoring and Assessment, 125, 91–98. https://doi.org/10.1007/s10661-006-9242-5 PMID:16917693

Storelli, M. M., & Marcotrigiano, G. O. (2005). Bioindicator organisms: Heavy metal pollution evaluation in the Ionian Sea (Mediterranean Sea—Italy). Environmental Monitoring and Assessment, 102, 159–166. https://doi.org/10.1007/s10661-005-6018-2 PMID:15869184

Szefer, P. (1986). Some metals in benthic invertebrates in Gdansk Bay. Marine Pollution Bulletin, 17(11), 503–507. https://doi.org/10.1016/0025-326X(86)90639-9

Szefer, P., & Szefer, K. (1985). Occurrence of ten metals in Mytilus edulis L. and Cardium glaucum L. from the Gdańsk Bay. Marine Pollution Bulletin, 16(11), 446–450. https://doi.org/10.1016/0025-326X(85)90415-1

TFC. (2008). Turkish Food Codeks, official paper, 21.09.2008 No.: 27004. https://www.resmigazete.gov.tr/eskiler/2008/09/20080921-3.htm. Accessed 13 May 2022.

Türkmen, M., Türkmen, A., Akyurt, I., & Tepe, Y. (2005). Limpet, Patella caerulea Linnaeus, 1758 and barnacle, Balanus sp., as biomonitors of trace metal availabilities in Iskenderun Bay, northern East Mediterranean Sea. Bulletin of Environmental Contamination and Toxicology, 74, 301–307. https://doi.org/10.1007/s00128-004-0584-9 PMID:15841970

Türk Çulha, S., Dereli, H., Karaduman, F. R., & Çulha, M. (2016). Assessment of trace metal contamination in the sea cucumber (Holothuria tubulosa) and sediments from the Dardanelles Strait (Turkey). Environmental Science and Pollution Research International, 23(12), 11584–11597. https://doi.org/10.1007/s11356-016-6152-0 PMID:26931662

Türk Çulha, S., Çulha, M., Karayücel, İ., Çelik, M. Y., & İşler, Y. (2017). Heavy metals in Mytilus galloprovincialis, suspended particulate matter and sediment from offshore submerged longline system, Black Sea. International Journal of Environmental Science and Technology, 14, 385–396. https://doi.org/10.1007/s13762-016-1158-1

Uysal, H., Yaramaz, Ö., Tuncer, S., & Parlak, H. (1989). Ege denizi kıyılarında pollusyon durumu, organizma ve ekosystem üzerindeki etkileriyle ilgili araştırmalar. [in Turkish with English summary]. Ege Üniversitesi Su Ürünleri Dergisi, 6 (21-22-23-24), 144-159.

USEPA. (2010). Risk-Based Concentration Table. Available at http://www.epa.gov/reg3hwmd/risk/human/index.htm. Accessed 15 April 2014.

USEPA. (2020). U.S. Environmental Protection Agency Regional Screening Level (RSL) Summary Table (TR=1E-06, HQ=1)May 2020, Integrated Risk Information System. https://www.epa.gov/iris/. Accessed 25 June 2021.

Walsh, K., Dunstan, R. H., & Murdoch, R. N. (1995). Differential bioaccumulation of heavy metals and organopollutants in the soft tissue and shell of the marine gastropod, Austrocochlea constricta. Archives of Environmental Contamination and Toxicology, 28, 35–39. https://doi.org/10.1007/BF00213966

Yüzereroğlu, T. A., Gök, G., Coğun, H. Y., Firat, O., Aslanyavrusu, S., Maruldali, O., & Kargin, F. (2010). Heavy metals in Patella caerulea (Mollusca, Gastropoda) in polluted and nonpolluted areas from the Iskenderun Gulf (Mediterranean Turkey). Environmental Monitoring and Assessment, 167, 257–264. https://doi.org/10.1007/s10661-009-1047-x PMID:19543988

YESR. (2018). Yalova Environmental Status Report, Provincial directorate of environment and urbanization, Yalova, 158. https://webdosya.csb.gov.tr/db/ced/icerikler/yalova_2018_-cdr_son-20190919135432.pdf. Accessed 13 May 2022.

Yap, C. K., Ismail, A., Omar, H., & Tan, S. G. (2004). Toxicities and tolerances of Cd, Cu, Pb and Zn in a primary producer (Isochrysis galbana) and in a primary consumer (Perna viridis). Environment International, 29, 1097–1104. https://doi.org/10.1016/S0160-4120(03)00141-7 PMID:14680893

Zlatanos, S., Laskaridis, K., & Sagredos, A. (2009). Determination of proximate composition, fatty acid content and amino acid profile of five lesser‐common sea organisms from the Mediterranean Sea. International Journal of Food Science & Technology, 44(8), 1590–1594. https://doi.org/10.1111/j.1365-2621.2008.01870.x

Downloads

Published

2022-09-28

How to Cite

Türk Çulha, S., Dalkıran, G., & Horzum, N. (2022). Heavy metal accumulation in a bioindicator species, Limpet Patella caerulea, in Yalova (İzmit Bay): Risk assessment for human health. Oceanological and Hydrobiological Studies, 51(3), 257–267. https://doi.org/10.26881/oahs-2022.3.02

Issue

Section

Articles