Impact of cloud cover on local remote sensing – Piaśnica River case study
DOI:
https://doi.org/10.26881/oahs-2022.3.04Keywords:
remote sensing, cloud, coastal morphology, Piaśnica, coastal zone satellite observationsAbstract
New satellite-based techniques open up new horizons to researchers and local communities. Concurrently, however, requirements and expectations with regard to satel-lite-based remote sensing products are increasingly higher. By relying on satellite-derived information, environmental observations can cover areas of a few to several metres resolution. Here we are dealing with freeof-charge and generally available sources of satellite-based information. The Piaśnica River mouth area was selected as an observation site representing a highly dynamic morphological transect. The paper compares products of cloud cover detection, supplied with data and available in the Copernicus database for a local area in the coastal zone of the Baltic Sea. The absolute difference did not exceed 5%, which confirms a high efficiency of the solutions offered. More than 96% of the clouded area determined for the Sentinel-2/MSI (Multispectral Instrument) was correctly identified when compared with supervised observations. The rate was lower (92%) for the Sentinel-3/OLCI (Ocean and Land Colour Instrument). It was eventually concluded that, at the local level, successful observations can be conducted using the cloud cover map supplied with the satellite data. At the same time, the analyses presented do not rule out further efforts to, e.g., increase the accuracy and speed of the analyses.
Downloads
References
Amin, R., Lewis, D., Gould, R. W., Hou, W., Lawson, A., Ondrusek, M. & Arnone, R. (2014). Assessing the Application of Cloud–Shadow Atmospheric Correction Algorithm on HICO. IEEE Transactions on Geoscience and Remote Sensing. 52( 5). 2646-2653. doi: 10.1109/TGRS.2013.2264166.
Arino, O.; Gross, D.; Ranera, F.; Leroy, M.; Bicheron, P.; Brockman, C.; Defourny, P.; Vancutsem, C.; Achard, F.; Durieux, L. (2007). GlobCover: ESA service for global land cover from MERIS. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007.
Baetens, L., Desjardins, C. & Hagolle O. (2022). Validation of Copernicus Sentinel-2 Cloud Masks Obtained from MAJA,, Sen2Cor, and FMask Processors Using Reference Cloud Masks Generated with a Supervised Active Learning Procedure. Remote Sensing. 11(4): 433. DOI:10.3390/rs11040433
Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S. & Lu, M. (2015). Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens., 103, 7–27. https://doi.org/10.1016/j.isprsjprs.2014.09.002
Choi, Y-J., Ban, H-J., Han, H-J. & Hong S. (2022). A Maritime Cloud-Detection Method Using Visible and Near-Infrared Bands over the Yellow Sea and Bohai Sea. Remote Sensing. 14(3): 793. DOI:10.3390/rs14030793
Dogliotti, A.I., Ruddick, K.G., Nechad, B., Doxaran, D. & Knaeps E. (2015). A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine water. Remote Sensing of Environment. 156: 157-168. DOI:10.1016/j.rse.2014.09.020
EO Research Team, (2020). Cloud Masks at Your Service. https://medium.com/sentinel-hub/cloud-masks-at-yourservice-6e5b2cb2ce8a (accessed 25 July 2022).
Foody, G.M.; Mathur, A.; Sanchez-Hernandez, C. & Boyd, D.S. (2006). Training set size requirements for the classification of a specific class. Remote Sens. Environ. 104, 1–14. (doi:10.1016/j.rse.2006.03.004).
Hollstein, A.; Segl, K.; Guanter, L.; Brell, M. & Enesco, M. (2016). Ready-to-Use Methods for the Detection of Clouds, Cirrus, Snow, Shadow, Water and Clear Sky Pixels in Sentinel-2 MSI Images. Remote Sens. 8, 666. https://doi.org/10.3390/rs8080666
Gascon, F.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; Languille, F.; Alhammoud, B.; Viallefont, F.; Bieniarz, J.; Pflug, B.; Clerc, S.; Pessiot, L.; Trémas, T.; Cadau, E.; De Bonis, R.; Isola, C.; Martimort, P. & Fernandez, V. (2016). Copernicus Sentinel-2 Calibration and Products Validation Status. Preprints, 2016100078 (doi: 10.20944/preprints201610.0078.v1)
Inglada, J.; Vincent, A.; Arias, M.; Tardy, B.; Morin, D. & Rodes, I. (2017). Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series. Remote Sens., 9, 95, doi:10.3390/rs9010095.
Kowalewski, M. (1997). A three-dimensional, hydrodynamic model of the Gulf of Gdańsk. Oceanol. Stud., 26(4): 77–98.
Krężel, A., Kozłowski, Ł. & Pasz kuta, M. (2008). A simple model of light transmission through the atmosphere over the Baltic Sea utilising satellite data, Oceanologia. 50(2): 125–146.
Krężel, A.& Paszkuta, M. (2011). Automatic Detection of Cloud Cover over the Baltic Sea. J. Atmos. Ocean. Technol. 2011, 28, 1117–1128. https://doi.org/10.1175/JTECH-D-10-05017.1.
Louis, J., (2021). Sentinel-2 Level-2A Algorithm Theoretical Basis Document. https://sentinels.copernicus.eu/documents/247904/446933/Sentinel-2-Level-2AAlgorithm-Theoretical-Basis-Document-ATBD.pdf (accessed 25 July 2022).
Lu, S., He, M., He, S., He, S., Pan, Y., Yin, W. & Li, P. (2021). An Improved Cloud Masking Method for GOCI Data over Turbid Coastal Waters, Remote Sensing, 13(14): 2722. DOI:10.3390/rs13142722
Mieslinger, T., Stevens, B., Kölling, T., Brath, M., Wirth, M. &Buehler, S. A. (2022). Optically thin clouds in the trades, Atmos. Chem. Phys., 22, 6879–6898, https://doi.org/10.5194/acp-22-6879-2022
Nechad, B., Ruddick, K.G. & Park, Y. (2010). Calibration and Validation of a Generic Multisensor Algorithm for Mapping of Total Suspended Matter in Turbid Waters, Remote Sensing of Environment. 114: 854-866. DOI:10.1016/j.rse.2009.11.022
Paszkuta, M., Krężel, A. & Ryłko N. (2022). Application of shape moments for cloudiness assessment in marine environmental research. Remote Sensing. 14(4).883: 1-18. DOI:10.3390/rs14040883
Paszkuta, M., Zapadka, T. & Krężel, A. (2021). Diurnal variation of cloud cover over the Baltic Sea. Oceanologia. 20: 1-13. DOI:10.1016/j.oceano.2021.12.005
Paszkuta, M., Zapadka, T. & Krężel, A. (2019). Assessment of cloudiness for use in environmental marine research. International Journal of Remote Sensing. 40(24): 9439-9459. DOI: 10.1080/01431161.2019.1633697
Stehman, S.V. (2009). Sampling designs for accuracy assessment of land cover. Int. J. Remote Sens. 2009, 30, 5243–5272. https://doi.org/10.1080/01431160903131000
Wevers, J., Müller, D., Scholze, J., Kirches, G., Quast, R. & Brockmann, C., 202. IdePix forSentinel-2 MSI algorithm theoretical basis document (version 1.0). Zenodo. https://doi.org/10.5281/zenodo.5788067.
Woźniak, B., Bradtke, K., Darecki, M., Dera, J., DudzińskaNowak, J., Dzierzbicka-Głowacka, L., Ficek, D., Furmańczyk, K., Kowalewski, M., Krężel, A., Majchrowski, R., Ostrowska, M., Paszkuta, M., Stoń-Egiert, J., Stramska, M & Zapadka T. (2011a). SatBaltic – a Baltic environmental satellite remote sensing system- an ongoing project in Poland, Part 1: Assumptions, scope and operating range. Oceanologia. 53(4): 897–924. DOI:10.5697/oc.53-4.925.
Woźniak, B., Bradtke, K., Darecki, M., Dera, J., DudzińskaNowak, J., Dzierzbicka-Głowacka, L., Ficek, D., Furmańczyk, K., Kowalewski, M., Krężel, A., Majchrowski, R., Ostrowska, M., Paszkuta, M., Stoń-Egiert, J., Stramska, M. & Zapadka, T. (2011b). SatBaltic – a Baltic environmental satellite remote sensing system- an ongoing project in Poland, Part 2: Practical applicability and preliminary results. Oceanologia. 53(4): 925–958. DOI:10.5697/oc.53-4.897
Zapadka, T., Krężel, A., Paszkuta, M. & Darecki, M. (2015). Daily radiation budget of the Baltic sea surface from satellite data. Polish Maritime Research. 22(3): 50-56. DOI:10.1515/pomr-2015-0056