Antifouling activity of bacterial extracts associated with soft coral and macroalgae from the Red Sea
DOI:
https://doi.org/10.26881/oahs-2022.4.02Keywords:
antifouling, antibiofilm, antisettlement, marine bacteria, bioactive compounds, Red SeaAbstract
In marine environments where biofouling occurs and has an impact on the maritime economy and environment, compounds that inhibit the attachment, growth and survival of microorganisms in a biofilm complex as well as settlement of larvae are considered potential antifouling compounds. In this study, the extracellular metabolites from two surface- associated bacteria isolated from soft coral and macroalga were evaluated for antibiofilm and antisettlement activity. The bacteria were identified using 16S rRNA gene sequencing, and the culture supernatant extract of each strain was evaluated for antibiofilm activity. The compounds present in the extracts were analysed using GC-MS. The two bacterial strains were identified as Bacillus licheniformis MBR1 and Vibrio alginolyticus MBR4 for the isolates from soft coral and macroalgae, respectively. The extracts inhibited the growth of biofilm-forming bacteria, biofilm formation and barnacle larval settlement. The GC-MS analysis of the extract detected the presence of compounds such as tetrapentacontane, octadecanoic acid, 2,3-dihydroxypropyl ester, hexadecanoic acid, 2-hydroxy1-(hydroxymethyl) ethyl ester and 17-pentatriacontene. The results of the study show that extracellular metabolites of the bacteria associated with marine organisms could be used as natural antifouling compounds to control biofouling.
Downloads
References
Abdulrahman, I., Jamal, M. T., Pugazhendi, A., Dhavamani, J., & Satheesh, S. (2022a). Antibiofilm activity of secondary metabolites from bacterial endophytes of Red sea soft corals. International Biodeterioration & Biodegradation, 173,105462. https://doi.org/10.1016/j.ibiod.2022.105462
Abdulrahman, I., Jamal, M. T., & Satheesh, S. (2022b). The anti-settlement activity of extracts of marine bacteria associated with soft corals against barnacle larvae. Egyptian Journal of Aquatic Biology & Fisheries, 26(3), 885–900. https://doi.org/10.21608/ejabf.2022.248212
Adnan, M., Alshammari, E., Patel, M., Amir Ashraf, S., Khan, S., & Hadi, S. (2018). Significance and potential of marine microbial natural bioactive compounds against biofilms/biofouling: Necessity for green chemistry. PeerJ, 6, e5049. https://doi.org/10.7717/peerj.5049 PMID:29967730
Aguila-Ramírez, R. N., Hernández-Guerrero, C. J., GonzálezAcosta, B., Id-Daoud, G., Hewitt, S., Pope, J., & Hellio, C. (2014). Antifouling activity of symbiotic bacteria from sponge Aplysina gerardogreeni. International Biodeterioration & Biodegradation, 90 (May 2014), 64–70. https://doi.org/10.1016/j.ibiod.2014.02.003
Alzieu, C. (1998). Tributyltin: Case study of a chronić contaminant in the coastal environment. Ocean and Coastal Management, 40(1), 23–36. https://doi.org/10.1016/S0964-5691(98)00036-2
Antunes, J., Leão, P., & Vasconcelos, V. (2019). Marine biofilms: Diversity of communities and of chemical cues. Environmental Microbiology Reports, 11(3), 287–305. https://doi.org/10.1111/1758-2229.12694 PMID:30246474
Arulazhagan, P., & Vasudevan, N. (2009). Role of a moderately halophilic bacterial consortium in the biodegradation of polyaromatic hydrocarbons. Marine Pollution Bulletin, 58(2), 256–262. https://doi.org/10.1016/j.marpolbul.2008.09.017 PMID:18995870
Ba-Akdah, M. A., & Satheesh, S. (2021). Characterization and antifouling activity analysis of extracellular polymeric substances produced by an epibiotic bacterial strain Kocuria flava associated with the green macroalga Ulva lactuca. Acta Oceanologica Sinica, 40, 107–115. Advance online publication. https://doi.org/10.1007/s13131-020-1694-x
Balqadi, A. A., Salama, A. J., & Satheesh, S. (2018). Microfouling development on artificial substrates deployed in the central Red Sea. Oceanologia, 60(2), 219–231. https://doi.org/10.1016/j.oceano.2017.10.006
Bhushan, B. (2016). Bio- and inorganic fouling. In B. Bhushan (Ed.), Biomimetics: Bioinspired hierarchical-structured surfaces for green science and technology (pp. 423–456). Springer International Publishing., https://doi.org/10.1007/978-3-319-28284-8_12
Blockley, A., Elliott, D. R., Roberts, A. P., & Sweet, M. (2017). Symbiotic microbes from marine invertebrates: Driving a new era of natural product drug discovery. Diversity (Basel), 9(4), 49. https://doi.org/10.3390/d9040049
Bowman, J. P. (2007). Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Marine Drugs, 5(4), 220–241. https://doi.org/10.3390/md504220 PMID:18463726
Cámara, M., Green, W., MacPhee, C. E., Rakowska, P. D., Raval, R., Richardson, M. C., Slater-Jefferies, J., Steventon, K., & Webb, J. S. (2022). Economic significance of biofilms: A multidisciplinary and cross-sectoral challenge. NPJ Biofilms and Microbiomes, 8(1), 42. https://doi.org/10.1038/s41522-022-00306-y PMID:35618743
Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., & Prinsep, M. R. (2021). Marine natural products. Natural Product Reports, 38(2), 362–413. https://doi.org/10.1039/D0NP00089B PMID:33570537
Chambers, L. D., Stokes, K. R., Walsh, F. C., & Wood, R. J. (2006). Modern approaches to marine antifouling coatings. Surface and Coatings Technology, 201(6), 3642–3652.https://doi.org/10.1016/j.surfcoat.2006.08.129
Chang, R.-H., Yang, L.-T., Luo, M., Fang, Y., Peng, L.-H., Wei, Y., Fang, J., Yang, J.-L., & Liang, X. (2021). Deep-sea bacteria trigger settlement and metamorphosis of the mussel Mytilus coruscus larvae. Scientific Reports, 11(1), 919. https://doi.org/10.1038/s41598-020-79832-8 PMID:33441694
Dhankhar, S., Dhankhar, S., & Yadav, P. (2012). Investigating antimicrobial properties of endophytic fungi associated with Salvadora oleoides decne. Anti-Infective Agents, 11(1), 48–58. https://doi.org/10.2174/22113626130106
Dobretsov, S., & Rittschof, D. (2020). Love at first taste: Induction of larval settlement by marine microbes. International Journal of Molecular Sciences, 21(3), 731. https://doi.org/10.3390/ijms21030731 PMID:31979128
Dobretsov, S. V., & Qian, P.-Y. (2002). Effect of bacteria associated with the green alga Ulva reticulata on marine micro- and macrofouling. Biofouling, 18(3), 217–228. https://doi.org/10.1080/08927010290013026
Eduok, U., Suleiman, R., Gittens, J., Khaled, M., Smith, T. J., Akid, R., El Ali, B., & Khalil, A. (2015). Anticorrosion/antifouling properties of bacterial spore-loaded sol–gel type coating for mild steel in saline marine condition: A case of thermophilic strain of Bacillus licheniformis. RSC Advances, 5(114), 93818–93830. https://doi.org/10.1039/ C5RA16494J
Egan, S., Holmström, C., & Kjelleberg, S. (2001). Pseudoalteromonas ulvae sp. nov., a bacterium with antifouling activities isolated from the surface of a marine alga. International Journal of Systematic and Evolutionary Microbiology, 51(4), 1499–1504. https://doi.org/10.1099/00207713-51-4-1499 PMID:11491351
Elsayed, T., Galil, D., Sedik, M., Hassan, H., & Sadik, M. (2020). Antimicrobial and anticancer activities of actinomycetes isolated from egyptian soils. International Journal of Current Microbiology and Applied Sciences, 9(9), 1689–1700. Advance online publication. https://doi.org/10.20546/ijcmas.2020.909.209
Gomez-Banderas, J. (2022). Marine natural products: A promising source of environmentally friendly antifouling agents for the maritime industries. Frontiers in Marine Science, 9, 858757. Advance online publication. https://doi.org/10.3389/fmars.2022.858757
Hadfield, M. G. (2011). Biofilms and marine invertebrate larvae: What bacteria produce that larvae use to choose settlement sites. Annual Review of Marine Science, 3, 453–470. https://doi.org/10.1146/annurev-marine-120709-142753 PMID:21329213
Harder, T., Dobretsov, S., & Qian, P. Y. (2004). Waterborne polar macromolecules act as algal antifoulants in the seaweed Ulva reticulata. Marine Ecology Progress Series, 274, 133–141. https://doi.org/10.3354/meps274133
Hou, X.-M., Hai, Y., Gu, Y.-C., Wang, C.-Y., & Shao, C.-L. (2019). Chemical and bioactive marine natural products of coralderived microorganisms (2015-2017). Current Medicinal Chemistry, 26(38), 6930–6941. https://doi.org/10.2174/0929867326666190626153819 PMID:31241431
Kamat, S., Dixit, R., & Kumari, M. (2022). Endophytic microbiome in bioactive compound production and plant disease management. In A. Kumar (Ed.), Microbial biocontrol: Food security and post harvest management (Vol. 2, pp. 79–128). Springer International Publishing., https://doi.org/10.1007/978-3-030-87289-2_4
Kamino, K. (2016). Barnacle underwater attachment. In A. M. Smith (Ed.), Biological adhesives (pp. 153–176). Springer International Publishing., https://doi.org/10.1007/978-3-319-46082-6_7
Kaspar, F., Neubauer, P., & Gimpel, M. (2019). Bioactive secondary metabolites from Bacillus subtilis: A comprehensive review. Journal of Natural Products, 82(7), 2038–2053. https://doi.org/10.1021/acs.jnatprod.9b00110 PMID:31287310
Krug, P. J. (2006). Defense of benthic invertebrates against surface colonization by larvae: A chemical arms race. In N. Fusetani & A. S. Clare (Eds.), Antifouling compounds (Vol. 42, pp. 1–53). Springer Berlin Heidelberg., https://doi.org/10.1007/3-540-30016-3_1
Kumar, D., Karthik, M., & Rajakumar, R. (2018). GC-MS analysis of bioactive compounds from ethanolic leaves extract of Eichhornia crassipes (mart) solms. And their pharmacological activities. Pharma Innov J, 7(8), 459–462.
Letunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301 PMID:33885785
Ma, Y., Liu, P., Yu, S., Li, D., & Cao, S. (2009). Inhibition of common fouling organisms in mariculture by epiphytic bacteria from the surfaces of seaweeds and invertebrates. Acta Ecologica Sinica, 29(4), 222–226. https://doi.org/10.1016/j.chnaes.2009.08.004
Modolon, F., Barno, A. R., Villela, H. D. M., & Peixoto, R. S. (2020). Ecological and biotechnological importance of secondary metabolites produced by coral-associated bacteria. Journal of Applied Microbiology, 129(6), 1441–1457. https://doi.org/10.1111/jam.14766 PMID:32627318
Muras, A., Larroze, S., Mayer, C., Teixeira, T., Wengier, R., Benayahu, Y., & Otero, A. (2021a). Evaluation of the antifouling efficacy of Bacillus licheniformis extracts under environmental and natural conditions. Frontiers in Marine Science, 8, 711108. Advance online publication. https://doi.org/10.3389/fmars.2021.711108
Muras, A., Romero, M., Mayer, C., & Otero, A. (2021b). Biotechnological applications of Bacillus licheniformis. Critical Reviews in Biotechnology, 41(4), 609–627. https://doi.org/10.1080/07388551.2021.1873239 PMID:33593221
O’Toole G. A. (2011). Microtiter dish biofilm formation assay. Journal of visualized experiments : JoVE, (47), 2437. https://doi.org/10.3791/2437
Ortega-Morales, B. O., Chan-Bacab, M. J., Miranda-Tello, E., Fardeau, M.-L., Carrero, J. C., & Stein, T. (2008). Antifouling activity of sessile bacilli derived from marine surfaces. Journal of Industrial Microbiology & Biotechnology, 35, 9–15. https://doi.org/10.1007/s10295-007-0260-2 PMID:17909869
Peng, L.-H., Liang, X., Xu, J.-K., Dobretsov, S., & Yang, J.-L. (2020). Monospecific biofilms of Pseudoalteromonas promote larval settlement and metamorphosis of Mytilus coruscus. Scientific Reports, 10, 2577. https://doi.org/10.1038/s41598-020-59506-1 PMID:32054934
Pham, T. M., Wiese, J., Wenzel-Storjohann, A., & Imhoff, J. F. (2016). Diversity and antimicrobial potential of bacterial isolates associated with the soft coral Alcyonium digitatum from the Baltic Sea. Antonie van Leeuwenhoek, 109(1), 105–119. https://doi.org/10.1007/s10482-015-0613-1 PMID:26558794
Qian, P.-Y., Xu, Y., & Fusetani, N. (2010). Natural products as antifouling compounds: Recent progress and future perspectives. Biofouling, 26(2), 223–234. https://doi.org/10.1080/08927010903470815 PMID:19960389
Rajan, B. M., & Kannabiran, K. (2014). Extraction and identification of antibacterial secondary metabolites from marine Streptomyces sp. Vitbrk2. International Journal of Molecular and Cellular Medicine, 3(3), 130–137. PMID:25317399
Salama, A. J., Satheesh, S., & Balqadi, A. A. (2018). Antifouling activities of methanolic extracts of three macroalgal species from the Red Sea. Journal of Applied Phycology, 30, 1943–1953. https://doi.org/10.1007/s10811-017-1345-6
Satheesh, S., Ba-Akdah, M. A., & Al-Sofyani, A. A. (2016). Natural antifouling compound production by microbes associated with marine macroorganisms: A review. Electronic Journal of Biotechnology, 21, 26–35. https://doi.org/10.1016/j.ejbt.2016.02.002
Satheesh, S., Soniamby, A. R., Sunjaiy Shankar, C. V., & Mary Josephine Punitha, S. (2012). Antifouling activities of marine bacteria associated with sponge (Sigmadocia sp.). Journal of Ocean University of China, 11, 354–360. https://doi.org/10.1007/s11802-012-1927-5
Siddik, A., & Satheesh, S. (2019). Characterization and assessment of barnacle larval settlement-inducing activity of extracellular polymeric substances isolated from marine biofilm bacteria. Scientific Reports, 9(1), 17849. https://doi.org/10.1038/s41598-019-54294-9 PMID:31780773
Srinivasan, R., Kannappan, A., Shi, C., & Lin, X. (2021). Marine bacterial secondary metabolites: A treasure house for structurally unique and effective antimicrobial compounds. Marine Drugs, 19(10), 530. https://doi.org/10.3390/md19100530 PMID:34677431
Steinberg, P. D., & De Nys, R. (2002). Chemical mediation of colonization of seaweed surfaces. Journal of Phycology, 38(4), 621–629. https://doi.org/10.1046/j.1529-8817.2002.02042.x
Subba Rao, D. V. (2005). Comprehensive review of the records of the biota of the indian seas and introduction of nonindigenous species. Aquatic Conservation, 15(2), 117–146. https://doi.org/10.1002/aqc.659
Sultan, M. H., Zuwaiel, A. A., Moni, S. S., Alshahrani, S., Alqahtani, S. S., Madkhali, O., & Elmobark, M. E. (2020). Bioactive principles and potentiality of hot methanolic extract of the leaves from Artemisia absinthium in vitro cytotoxicity against human mcf-7 breast cancer cells, antibacterial study and wound healing activity. Current Pharmaceutical Biotechnology, 21(15), 1711–1721. https://doi.org/10.2174/1389201021666200928150519 PMID:32988347
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120 PMID:33892491
Togashi, N., Shiraishi, A., Nishizaka, M., Matsuoka, K., Endo, K., Hamashima, H., & Inoue, Y. (2007). Antibacterial activity of long-chain fatty alcohols against Staphylococcus aureus. Molecules (Basel, Switzerland), 12(2), 139–148. https://doi.org/10.3390/12020139 PMID:17846563
van de Water, J. A. J. M., Allemand, D., & Ferrier-Pagès, C. (2018). Host-microbe interactions in octocoral holobionts – recent advances and perspectives. Microbiome, 6(1), 64. https://doi.org/10.1186/s40168-018-0431-6 PMID:29609655
Venkatramanan, M., Sankar Ganesh, P., Senthil, R., Akshay, J., Veera Ravi, A., Langeswaran, K., Vadivelu, J., Nagarajan, S., Rajendran, K., & Shankar, E. M. (2020). Inhibition of quorum sensing and biofilm formation in Chromobacterium violaceum by fruit extracts of Passiflora edulis. ACS Omega, 5(40), 25605–25616. https://doi.org/10.1021/acsomega.0c02483 PMID:33073086
Viju, N., Anitha, A., Vini, S., Shankar, C. V., Sathianeson, S., & Punitha, M. (2014). Antibiofilm activities of extracellular polymeric substances produced by bacterial symbionts of seaweeds. Indian Journal of Geo-Marine Sciences, 43(11), 2136–2146.
Vinagre, P. A., Simas, T., Cruz, E., Pinori, E., & Svenson, J. (2020). Marine biofouling: A european database for the marine renewable energy sector. Journal of Marine Science and Engineering, 8(7), 495. https://doi.org/10.3390/jmse8070495
Wahl, M., Al Sofyani, A., Saha, M., Kruse, I., Lenz, M., & Sawall, Y. (2014). Large scale patterns of antimicrofouling defenses in the hard coral Pocillopora verrucosa in an environmental gradient along the Saudi Arabian coast of the Red Sea. PLoS One, 9(12), e106573. Advance online publication. https://doi.org/10.1371/journal.pone.0106573 PMID:25485603
Wang, K.-L., Wu, Z.-H., Wang, Y., Wang, C.-Y., & Xu, Y. (2017). Mini-review: Antifouling natural products from marine microorganisms and their synthetic analogs. Marine Drugs, 15(9), 266. https://doi.org/10.3390/md15090266 PMID:28846626
Wang, K.-L., Dou, Z.-R., Gong, G.-F., Li, H.-F., Jiang, B., & Xu, Y. (2022). Anti-larval and anti-algal natural products from marine microorganisms as sources of anti-biofilm agents. Marine Drugs, 20(2), 90. https://doi.org/10.3390/md20020090 PMID:35200620
Yebra, D. M., Kiil, S., & Dam-Johansen, K. (2004). Antifouling technology—Past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings, 50(2), 75–104. https://doi.org/10.1016/j.porgcoat.2003.06.001