Effect of phytoplankton adaptation on the distribution of its biomass and chlorophyll a concentration in the surface layer of the Black Sea

Authors

  • Liudmila Stelmakh Russian Academy of Sciences
  • Tatiana Gorbunova Russian Academy of Sciences

Keywords:

phytoplankton biomass, nutrients, carbon to chlorophyll a ratio, Black Sea

Abstract

Using the field data collected in the Black Sea in September 2005–May 2013, the authors studied the spatial variability of the ratio of organic carbon to chlorophyll a (C:Chl a) in the sea surface layer (0–1 m). The C:Chl a ratio is an important parameter that reflects the phytoplankton adaptation to abiotic factors. Its maximum variations occurred in September–October 2005 and October 2010 when the highest spatial variability of average light intensity and nitrogen concentration was observed in the upper mixed layer. As a result, the maps of phytoplankton biomass differed from chlorophyll maps. In August 2011, no effect of light or nitrogen on the spatial variability of the C:Chl a ratio was found. Changes in the contribution of dinoflagellates to the total phytoplankton biomass affected the C:Chl a ratio variability, which was two times lower compared to September–October 2005 and October 2010. Also, the spatial distribution of phytoplankton biomass differed from the distribution of chlorophyll a concentration only in some areas of the sea. In May 2013, environmental factors slightly varied across the study area and the spatial variability of the C:Chl a ratio was insignificant. Therefore, the map of phytoplankton biomass indicated similarities with the chlorophyll map.

Downloads

Download data is not yet available.

References

Behrenfeld, M.J., Boss, E., Siegel, D.A. & Shea, D.M. (2005). Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochemical Cycles 19.GB 1006. DOI: 10.1029/2004GB002299.

Bellacicco, M., Volpe, G, Colella, S., Pitarch, J. & Santoleri, R. (2016). Influence of photoacclimation on the phytoplankton seasonal cycle in the Mediterranean Sea as seen by satellite. Remote Sensing of Environment. 184: 595–604. DOI: 10.1016/j.rse.2016.08.004.

Clark, D.R. (2001). Growth rate relationships to physiological indices of nutrient status in marine diatoms. J. Phycol. 37: 249–256. DOI: 10.1046/j.1529-8817.2001.037002249.x.

Finenko, Z.Z., Churilova, T.Y. & Li, R.I. (2005). Vertical distribution of chlorophyll and fluorescence in the Black Sea. Marine Ecological Journal 4(1): 15–45. (In Russian). https://repository.marine-research.org/handle/299011/783.

Finenko, Z.Z., Kovalyova, I.V. & Suslin, V.V. (2018). A new approach to estimate phytoplankton biomass and its variability in the Black Sea surface water layer based on satellite data. Advances in Current Biology 138(3): 294–307 (In Russian). DOI: 10.7868/S0042132418030079.

Finkel, Z.V. (2001). Light absorption and size scaling of lightlimited metabolism in marine diatoms. Limnol. Oceanogr. 46: 86–94. DOI: 10.4319/lo.2001.46.1.0086.

Geider, R.J., MacIntyre, H.L. & Kana, T.M. (1997). Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a: carbon ratio to light, nutrient limitation and temperature. Mar. Ecol. Progress Series 148: 187–200. DOI: 10.3354/meps148187.

Harrison, P.J., Conway, H.L., Holmes, R.W. & Davis, C.O. (1977). Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetoceros debilis, Skeletonema costatum and Thallassiosira gravid. Mar. Biol. 43: 19–31. DOI: 10.1007/BF00392568.

JGOFS Protocols (1994). Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements. Manual and Guides. 29. DOI: 11329/220.

Levasseur, M., Thompson, P.A. & Harrison, P.J. (1993). Physiological acclimation of marine phytoplankton to different nitrogen sources. J. Phycol. 29: 587–595. DOI: 10.1111/j.0022-3646.1993.00587.x.

Llewellyn, C.A., Fishwick, J.R. & Blackford, J.C. (2005). Phytoplankton community assemblage in the English Channel: a comparison using chlorophyll a derived from HPLC-CHEMTAX and carbon derived from microscopy cell counts. J. Plankton Res. 27: 103–119. DOI: 10.1093/plankt/fbh158.

Menden-Deuer, S. & Lessard, E.J. (2000). Carbon to volume relationships for dinoflagellates, diatoms and other protist plankton. Limnol. Oceanogr. 45: 569–579. DOI: 10.4319/lo.2000.45.3.

Montagnes, D.J., Berges, J.A., Harrison, P.J. & Taylor, F.J.R. (1994). Estimating carbon, nitrogen, protein and chlorophyll a from volume in marine phytoplankton. Limnol. Oceanogr. 39: 1044–1060. DOI: 10.4319/lo.1994.39.5.1044.

Parsons, T.R., Takahashi, M. & Hargrave, B. (1982). Biological oceanography. Moskow: Light and food industry. (In Russian).

Sapozhnikov, V.V. (1988). Methods of hydrochemical determinations of main nutrient elements. Moscow. (In Russian).

Sathyendranath, S., Stuart, V., Nair, A., Oka, K., Nakane, T. et al. (2009). Carbon-to-chlorophyll ratio and growth rate of phytoplankton in the sea. Mar. Ecol. Progress Series 383: 73–84. DOI: 10.3354/meps07998.

Stelmakh, L.V. & Lobanova, R.A. (1993). The carbonchlorophyll a ratio in phytoplankton of surface waters of Eastern tropical Atlantic. Marine Ecology 43: 15–20 (In Russian), https://repository.marine-research.org/handle/299011/2077.

Stelmakh, L.V. & Georgieva, E.Yu. (2014). Microzooplankton: the trophic role and involvement in the phytoplankton loss and bloom-formation in the Black Sea. Turkish Journal of Fisheries and Aquatic Sciences 14(5): 955–964. DOI: 10.4194/1303-2712-v14_4_15.

Stelmakh, L. & Gorbunova, T. (2018). Emiliania huxleyi blooms in the Black Sea: influence of abiotic and biotic factors. Botanica 24(2):172–184. DOI: 10.2478/botlit-2018-0017.

Stramski, D.A., Sciandra, A. & Claustre, H. (2002). Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana. Limnol. Oceanogr. 47: 392–403. DOI: 10.4319/lo.2002.47.2.0392.

Strathmann, R.R. (1967). Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12: 411–418. DOI: 10.4319/lo.1967.12.3.0411.

Strzepek, F.R. & Price, N.M. (2000). Influence of irradiance and temperature on the iron content of the marine diatom Thalassiosira weissflogii (Bacillariophyceae). Mar. Ecol. Prog. Ser. 206: 107–117. DOI: 10.3354/meps206107.

Tomas, C.R. (1997). Identifying Marine Diatoms and Dinoflagellates. New York: Academic Press.

Vedernikov, V.I. (1989). Primary production and chlorophyll in the Black Sea during summer-autumn period. Structure and production characteristics of the plankton communities of the Black Sea. Moscow: Science: 65–83 (In Russian).

Vedernikov, V.I. & Mikaelian, A.S. (1989). Structural and functional characteristics of different size groups of the Black Sea phytoplankton. Structure and production characteristics of the plankton communities of the Black Sea. Moscow: Science: 84–105. (In Russian).

Wang, X.J., Behrenfeld, M., Borgne, R.Le., Murtugudde, R. & Boss, E. (2009). Regulation of phytoplankton carbon to chlorophyll ratio by light, nutrients and temperature in the equatorial Pacific Ocean: a basin-scale model. Biogeosciences 6: 391–404.

Wang, X., Murtugudde, R., Hackert, E. & Maraňón, E. (2013). Phytoplankton carbon and chlorophyll distributions in the equatorial Pacific and Atlantic: A basin-scale comparative study. Journal of Marine Systems 109–110: 138–148. DOI: 10.1016 /j.jmarsys.2012.03.004.

Downloads

Published

2019-12-10

How to Cite

Stelmakh, L. ., & Gorbunova, T. . (2019). Effect of phytoplankton adaptation on the distribution of its biomass and chlorophyll a concentration in the surface layer of the Black Sea. Oceanological and Hydrobiological Studies, 48(4), 404–414. Retrieved from https://czasopisma.bg.ug.edu.pl/index.php/oandhs/article/view/7974

Issue

Section

Articles