Distribution of phenol derivatives by river waters to the marine environment (Gulf of Gdansk, Baltic Sea)
DOI:
https://doi.org/10.26881/oahs-2023.1.07Keywords:
endocrine-disrupting compounds, Gulf of Gdańsk, riverine flux, catchment area, bisphenol A, alkylphenolsAbstract
The aim of this study from 2020 was to identify the role of rivers, including those with low water flow and a constant inflow of bisphenol A (BPA), 4-tert-octylphenol (4-t-OP) and 4-nonylphenol (4-NP) to the marine environment. Water samples were collected from the small rivers flowing into the Gulf of Gdańsk and from the Vistula River. Final assays were performed using high-performance liquid chromatography with a fluorescence detector (HPLC-FL). The highest concentrations of phenol derivatives were found in summer, most likely due to higher consumption of products containing phenol derivatives. Another factor may be the type of development in the catchment area. The measurements did not exceed the PNEC, though this does not mean that the amounts of phenol derivatives introduced into the Gulf of Gdańsk by rivers can be ignored. Mean loads of xenobiotics introduced to the sea via rivers have been calculated as over 320 kg y-1 of BPA and about 55 kg y-1 of 4-t-OP and 4-NP each.
Downloads
References
Abdel‐Tawwab, M., & Hamed, H. S. (2018). Effect of bisphenol A toxicity on growth performance, biochemical variables, and oxidative stress biomarkers of Nile tilapia, Oreochromis niloticus (L.). Journal of Applied Ichthyology, 34(5), 1117– 1125. https://doi.org/10.1111/jai.13763.
Acir, I. H., & Guenther, K. (2018). Endocrine-disrupting metabolites of alkylphenol ethoxylates - A critical review of analytical methods, environmental occurrences, toxicity, and regulation. The Science of the Total Environment, 635, 1530–1546. https://doi.org/10.1016/j.scitotenv.2018.04.079 PMID:29874777.
Ahel, M., Giger, W., & Koch, M. (1994). Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment—I. Occurrence and transformation in sewage treatment. Water Research, 28(5), 1131–1142. https://doi.org/10.1016/0043- 1354(94)90200-3.
Ahmed, M. B., Zhou, J. L., Ngo, H. H., Johir, M. A. H., & Sornalingam, K. (2018). Sorptive removal of phenolic endocrine disruptors by functionalized biochar: Competitive interaction mechanism, removal efficacy and application in wastewater. Chemical Engineering Journal, 335, 801–811. https://doi.org/10.1016/j.cej.2017.11.041.
Bhandari, R. K., Deem, S. L., Holliday, D. K., Jandegian, C. M., Kassotis, C. D., Nagel, S. C., Tillitt, D. E., Vom Saal, F. S. & Rosenfeld, C. S. (2015). Effects of the environmental estrogenic contaminants bisphenol A and 17α-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species. General and Comparative Endocrinology, 214, 195–219. https://doi.org/10.1016/j. ygcen.2014.09.014 PMID:25277515.
Bodziach, K., Staniszewska, M., Falkowska, L., Nehring, I., Ożarowska, A., Zaniewicz, G., & Meissner, W. (2021). Gastrointestinal and respiratory exposure of water birds to endocrine disrupting phenolic compounds. The Science of the Total Environment, 754, 142435. https://doi. org/10.1016/j.scitotenv.2020.142435 PMID:33254919.
Brian, J. V., Harris, C. A., Scholze, M., Backhaus, T., Booy, P., Lamoree, M., Pojana, G., Jonkers, N., Runnalls, T., Bonfà, A., Marcomini, A., & Sumpter, J. P. (2005). Accurate prediction of the response of freshwater fish to a mixture of estrogenic chemicals. Environmental Health Perspectives, 113(6), 721– 728. https://doi.org/10.1289/ehp.7598 PMID:15929895.
Chaube, R., Gautam, G. J., & Joy, K. P. (2013). Teratogenic effects of 4-nonylphenol on early embryonic and larval development of the catfish Heteropneustes fossilis. Archives of Environmental Contamination and Toxicology, 64(4), 554–561. https://doi.org/10.1007/s00244-012-9851-7 PMID:23229197.
Cieśliński, R., Pietruszyński, Ł., & Duda, F. (2017). Differentiation Flow in the Waters of the Hydrographic System of Western Part of the Martwa Wisła and Wisła Śmiała. Przegląd Geofizyczny 3(4), 197-215.
Cladière, M., Gasperi, J., Lorgeoux, C., Bonhomme, C., Rocher, V., & Tassin, B. (2013). Alkylphenolic compounds and bisphenol A contamination within a heavily urbanized area: Case study of Paris. Environmental Science and Pollution Research International, 20(5), 2973–2983. https://doi.org/10.1007/ s11356-012-1220-6 PMID:23054786.
Colin, A., Bach, C., Rosin, C., Munoz, J. F., & Dauchy, X. (2014). Is drinking water a major route of human exposure to alkylphenol and bisphenol contaminants in France? Archives of Environmental Contamination and Toxicology, 66(1), 86–99. https://doi.org/10.1007/s00244-013-9942-0 PMID:23921451.
Corrales, J., Kristofco, L. A., Steele, W. B., Yates, B. S., Breed, C. S., Williams, E. S., & Brooks, B. W. (2015). Global assessment of bisphenol A in the environment: Review and analysis of its occurrence and bioaccumulation. Dose-Response, 13(3), 15593258-15598308. https://doi. org/10.1177/1559325815598308 PMID:26674671.
Crain, D. A., Eriksen, M., Iguchi, T., Jobling, S., Laufer, H., LeBlanc, G. A., & Guillette, L. J., Jr. (2007). An ecological assessment of bisphenol-A: Evidence from comparative biology. Reproductive Toxicology (Elmsford, N.Y.), 24(2), 225–239. https://doi.org/10.1016/j.reprotox.2007.05.008 PMID:17604601.
EU, 2008. Dyrektywa Parlamentu Europejskiego i Rady 2008/105/WE z dnia 16 grudnia 2008 r. w sprawie środowiskowych norm jakości w dziedzinie polityki wodnej, zmieniająca i w następstwie uchylająca dyrektywy Rady 82/176/EWG, 83/513/EWG, 84/156/EWG, 84/491/ EWG i 86/280/EWG oraz zmieniająca dyrektywę 2000/60/ WE Parlamentu Europejskiego i Rady.
Falkowska, L., Grajewska, A., Staniszewska, M., Nehring, I., Szumiło-Pilarska, E., & Saniewska, D. (2017). Inhalation - Route of EDC exposure in seabirds (Larus argentatus) from the Southern Baltic. Marine Pollution Bulletin, 117(1-2), 111–117. https://doi.org/10.1016/j.marpolbul.2017.01.060 PMID:28159334.
Flint, S., Markle, T., Thompson, S., & Wallace, E. (2012). Bisphenol A exposure, effects, and policy: A wildlife perspective. Journal of Environmental Management, 104, 19–34. https:// doi.org/10.1016/j.jenvman.2012.03.021 PMID:22481365.
GIOŚ, 2019. Ocena opisowa stanu jednolitych części wód powierzchniowych monitorowanych w województwie pomorskim w roku 2018. Generalna Inspekcja Ochrony Środowiska. Gdańsk, 2019.
Hahladakis, J. N., & Iacovidou, E. (2018). Closing the loop on plastic packaging materials: What is quality and how does it affect their circularity? The Science of the Total Environment, 630, 1394–1400. https://doi.org/10.1016/j. scitotenv.2018.02.330 PMID:29554759.
Health Canada. (2008). Health Risk Assessment of Bisphenol A from Food Packaging Applications Bureau of Chemical Safety Food Directorate Health Products and Food Branch. Minister of Health Canada.
Huang, Z., Zhao, J. L., Yang, Y. Y., Jia, Y. W., Zhang, Q. Q., Chen, C. E., Liu, Y. S., Yang, B., Xie, L., & Ying, G. G. (2020). Occurrence, mass loads and risks of bisphenol analogues in the Pearl River Delta region, South China: Urban rainfall runoff as a potential source for receiving rivers. Environmental Pollution, 263, 114361. https://doi.org/10.1016/j.envpol.2020.114361 PMID:32203855.
Jin, X., Jiang, G., Huang, G., Liu, J., & Zhou, Q. (2004). Determination of 4-tert-octylphenol, 4-nonylphenol and bisphenol A in surface waters from the Haihe River in Tianjin by gas chromatography-mass spectrometry with selected ion monitoring. Chemosphere, 56(11), 1113–1119. https://doi.org/10.1016/j.chemosphere.2004.04.052 PMID:15276724.
Koniecko, I., Staniszewska, M., Falkowska, L., Burska, D., Kielczewska, J., & Jasinska, A. (2014). Alkylphenols in surface sediments of the Gulf of Gdansk (Baltic Sea). Water, Air, & Soil Pollution, 225(8), 1-11. https://doi.org/10.1007/s11270- 014-2040-8.
KZGW, 2011. Plan gospodarowania wodami na obszarze dorzecza Wisły. Mscr., Krajowy Zarząd Gospodarki Wodnej, Warszawa, 2011, p.3246-3718. https://doi.org/10.1016/0043-1354(82)90075-6.
Matsumoto, G. (1982). Comparative study on organic constituents in polluted and unpolluted inland aquatic environments—III: Phenols and aromatic acids in polluted and unpolluted waters. Water Research, 16(5), 551–557.
Matsumoto, H., Adachi, S., & Suzuki, Y. (2005). Bisphenol A in ambient air particulates responsible for the proliferation of MCF-7 human breast cancer cells and Its concentration changes over 6 months. Archives of Environmental Contamination and Toxicology, 48(4), 459–466. https://doi. org/10.1007/s00244-003-0243-x PMID:15883673.
Ministry of the Environment. Japan, 1998. Chemicals in the Environment (FY1997 report, in Japanese). Available at: http://www.env.go.jp/chemi/kurohon/http1997/html1/ siryo12.html.
Nehring, I., Falkowska, L., Staniszewska, M., Pawliczka, I., & Bodziach, K. (2018). Maternal transfer of phenol derivatives in the Baltic grey seal Halichoerus grypus grypus. Environmental Pollution, 242, 1642–1651. https://doi. org/10.1016/j.envpol.2018.07.113 PMID:30072224.
Nehring, I., Grajewska, A., Falkowska, L., Staniszewska, M., Pawliczka, I., & Saniewska, D. (2017). Transfer of mercury and phenol derivatives across the placenta of Baltic grey seals (Halichoerus grypus grypus). Environmental Pollution, 231, 1005–1012. https://doi.org/10.1016/j.envpol.2017.08.094 PMID:28898953.
Oehlmann, J., Schulte-Oehlmann, U., Kloas, W., Jagnytsch, O., Lutz, I., Kusk, K. O., Wollenberger, L., Santos, E. M., Paull, G. C., Van Look, K. J., & Tyler, C. R. (2009). A critical analysis of the biological impacts of plasticizers on wildlife. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1526), 2047–2062. https://doi.org/10.1098/ rstb.2008.0242 PMID:19528055.
RZGW, 2012. Warunki korzystania z wód zlewni rzeki Redy (SCWP: DW1802, DW1803) – Etap 1 – Dynamiczny bilans ilościowy zasobów wodnych”. Regionalny Zarząd Gospodarki Wodnej. Gliwice, sierpień 2012 r.
Saniewska, D., Bełdowska, M., Bełdowski, J., Jędruch, A., Saniewski, M., & Falkowska, L. (2014). Mercury loads into the sea associated with extreme flood. Environmental Pollution, 191, 93–100. https://doi.org/10.1016/j.envpol.2014.04.003 PMID:24816201.
Saniewska, D. (2019). Mercury Cycling in the Gulf of Gdańsk (Southern Baltic Sea). In Environmental HealthManagement and Prevention Practices. IntechOpen. https:// doi.org/10.5772/intechopen.86159.
Santhi, V. A., Hairin, T., & Mustafa, A. M. (2012). Simultaneous determination of organochlorine pesticides and bisphenol A in edible marine biota by GC-MS. Chemosphere, 86(10), 1066–1071. https://doi.org/10.1016/j. chemosphere.2011.11.063 PMID:22197311.
Selvaraj, K. K., Shanmugam, G., Sampath, S., Larsson, D. G., & Ramaswamy, B. R. (2014). GC-MS determination of bisphenol A and alkylphenol ethoxylates in river water from India and their ecotoxicological risk assessment. Ecotoxicology and Environmental Safety, 99, 13–20. https:// doi.org/10.1016/j.ecoenv.2013.09.006 PMID:24183982.
Sharma, M., & Chadha, P. (2017). Widely used non-ionic surfactant 4-nonylphenol: Showing genotoxic effects in various tissues of Channa punctatus. Environmental Science and Pollution Research International, 24(12), 11331–11339. https://doi.org/10.1007/s11356-017-8759-1 PMID:28303538.
Sohoni, P., Tyler, C. R., Hurd, K., Caunter, J., Hetheridge, M., Williams, T., Woods, C., Evans, M., Toy, R., Gargas, M., & Sumpter, J. P. (2001). Reproductive effects of longterm exposure to Bisphenol A in the fathead minnow (Pimephales promelas). Environmental Science & Technology, 35(14), 2917–2925. https://doi.org/10.1021/es000198n PMID:11478243.
Staniszewska, M., Falkowska, L., Grabowski, P., Kwaśniak, J., Mudrak-Cegiołka, S., Reindl, A. R., Sokołowski, A., Szumiło, E., & Zgrundo, A. (2014). Bisphenol A, 4-tert-octylphenol, and 4-nonylphenol in the Gulf of Gdańsk (Southern Baltic). Archives of Environmental Contamination and Toxicology, 67(3), 335–347. https://doi.org/10.1007/s00244-014-0023- 9 PMID:24752748.
Staniszewska, M., & Falkowska, L. (2011). Nonylphenol and 4-tert-octylphenol in the Gulf of Gdansk coastal zone. Oceanological and Hydrobiological Studies, 40(2), 49–56. https://doi.org/10.2478/s13545-011-0016-5.
Staniszewska, M., Koniecko, I., Falkowska, L., Burska, D., & Kiełczewska, J. (2016). The relationship between the black carbon and bisphenol A in sea and river sediments (Southern Baltic). Journal of Environmental Sciences (China), 41, 24–32. https://doi.org/10.1016/j.jes.2015.04.009 PMID:26969047.
Staniszewska, M., Nehring, I., & Mudrak-Cegiołka, S. (2016). Changes of concentrations and possibility of accumulation of bisphenol A and alkylphenols, depending on biomass and composition, in zooplankton of the Southern Baltic (Gulf of Gdansk). Environmental Pollution, 213, 489–501. https://doi. org/10.1016/j.envpol.2016.03.004 PMID:26970874.
Staniszewska, M., Nehring, I., & Zgrundo, A. (2015). The role of phytoplankton composition, biomass and cell volume in accumulation and transfer of endocrine disrupting compounds in the Southern Baltic Sea (The Gulf of Gdansk). Environmental Pollution, 207, 319–328. https://doi. org/10.1016/j.envpol.2015.09.031 PMID:26433181.
Staples, C. A., Dorn, P. B., Klecka, G. M., O’Block, S. T., & Harris, L. R. (1998). A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere, 36(10), 2149– 2173. https://doi.org/10.1016/S0045-6535(97)10133-3 PMID:9566294.
Statistics Poland data. 2019, Environment 2019. Statistics Poland. Warsaw, 2019.
Tao, H. Y., Zhang, J., Shi, J., Guo, W., Liu, X., Zhang, M., Ge, H., & Li, X. Y. (2021). Occurrence and emission of phthalates, bisphenol A, and oestrogenic compounds in concentrated animal feeding operations in Southern China. Ecotoxicology and Environmental Safety, 207, 111521. https://doi. org/10.1016/j.ecoenv.2020.111521 PMID:33254396.
Teuten, E. L., Saquing, J. M., Knappe, D. R., Barlaz, M. A., Jonsson, S., Björn, A., Rowland, S. J., Thompson, R. C., Galloway, T. S., Yamashita, R., Ochi, D., Watanuki, Y., Moore, C., Viet, P. H., Tana, T. S., Prudente, M., Boonyatumanond, R., Zakaria, M. P., Akkhavong, K., . . . Takada, H. (2009). Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1526), 2027–2045. https://doi.org/10.1098/rstb.2008.0284 PMID:19528054.
Voutsa, D., Hartmann, P., Schaffner, C., & Giger, W. (2006). Benzotriazoles, alkylphenols and bisphenol A in municipal wastewaters and in the Glatt River, Switzerland. Environmental Science and Pollution Research International, 13(5), 333–341. https://doi.org/10.1065/espr2006.01.295 PMID:17067028.
WFD-EAF. 2004. Expert Advisory Forum on priority substances under Water Framework Directive. Substance Data Sheet on octylphenols, draft of 1st March 2004. 13 p. WFD-EAF. 2005.
Expert Advisory Forum on priority substances under Water Framework Directive. Substance Data Sheet on 4-nonyl nonyl phenol (branched) and nonylphenol, final version 31st July 2005. 18 p.
Wojciechowska, E., Matej-Łukowicz, K., Nawrot, N., Gajewska, M., & Obarska-Pempkowiak, H. (2019). Preliminary evaluation of the concnentration of nitrogen and phosporus compounds transported to the Bay of Puck from the teritory of the community of Puck. Water Supply and Water Quality, (4 (66)), 14-21.
Wu, M., Wang, L., Xu, G., Liu, N., Tang, L., Zheng, J., ... & Lei, B. (2013). Seasonal and spatial distribution of 4-tertoctylphenol, 4-nonylphenol and bisphenol A in the Huangpu River and its tributaries, Shanghai, China. Environmental Monitoring and Assessment, 185(4), 3149– 3161. https://doi.org/10.1007/s10661-012-2779-6.
Xu, P., Zhou, X., Xu, D., Xiang, Y., Ling, W., & Chen, M. (2018). Contamination and risk assessment of estrogens in livestock manure: A case study in Jiangsu Province, China. International Journal of Environmental Research and Public Health, 15(1), 125. https://doi.org/10.3390/ijerph15010125 PMID:29329262.
Yamazaki, E., Yamashita, N., Taniyasu, S., Lam, J., Lam, P. K. S., Moon, H. B., Jeong, Y., Kannan, P., Achyuthan, H., Munuswamy, N., & Kannan, K. (2015). Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India. Ecotoxicology and Environmental Safety, 122, 565–572. https://doi. org/10.1016/j.ecoenv.2015.09.029 PMID:26436777.
Zhang, Z., Ren, N., Kannan, K., Nan, J., Liu, L., Ma, W., Qi, H., & Li, Y. (2014). Occurrence of endocrine-disrupting phenols and estrogens in water and sediment of the Songhua river, northeastern China. Archives of Environmental Contamination and Toxicology, 66(3), 361–369. https://doi. org/10.1007/s00244-014-9998-5 PMID:24468970.