Use of Coontail as a natural phytoremediation feed additive for common carp

Authors

  • Ümmühan Kiziloğlu Muğla Sıtkı Koçman University
  • Önder Yıldırım Muğla Sıtkı Koçman University
  • İsmail Berat Çantaş Muğla Sıtkı Koçman University

DOI:

https://doi.org/10.26881/oahs-2023.1.08

Keywords:

natural phytoremediation, Ceratophyllum demersum meal, common carp, soybean meal, growth and feed performance, body composition

Abstract

Ceratophyllum demersum is a submerged, rootless, freefloating macrophyte and natural aquatic phytoremediation. C. demersum has high efficiency in absorbing large amounts of nitrogen and phosphorus in the aquatic environment. In this study, the effects of a natural phytoremediation Ceratophyllum demersum meal, as a dietary supplement, on growth performance, feed utilization, and body composition of common carp (Cyprinus carpio L.,1758) were investigated. This was the first attempt to use coontail as a feed additive for common carp. Four isonitrogenous (38% crude protein), isolipidic (8% crude lipid), and isoenergetic (18 kJ g-1) diets were formulated control group (0%), CM5 group (5%), CM10 group (10%) and CM15 group (15%) in feed. Each dietary treatment was administered to triplicate in groups of 15 fish (~19 g). Carp were hand-fed to apparent saturation three times a day (09.00; 12.00 and 17.00). There was no difference between the control diet and 5% CM in terms of growth (final weight, weight gain, specific growth rate) and feed utilization (feed conversion rate, feed intake, feed efficiency) (p < 0.05). Increasing algae levels in diets improved protein levels in body compositions while decreasing lipid. There was no sign of appeared fish health indicators (disease or deformity) in all diet groups. This study results showed that instead of soybean meal, 5.75% and 6.07% as natural phytoremediation, C. demersum optimized the best growth and feed utilization performance in carp diets.

Downloads

Download data is not yet available.

References

Ali, S., Abbas, Z., Rizwan, M., Zaheer, I. E., Yavaş, İ., Ünay, A., Abdel-Daim, M. M., Bin-Jumah, M., Hasanuzzaman, M. & Kalderis, D. (2020). Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability, 12(1927), 1-33. https://doi.org/10.3390/su12051927i.

Anitha, K.C., Rajeshwari, Y.B., Prasanna, S.B., & Shree, J.S. (2016). Nutritive evaluation of Azolla as livestockfeed. Journal of Experimental Biology and Agricultural Sciences, 4, 670-674.http://jebas.org/Jou.Exp.Bio.Agr.Sci/00400613112016/10.18006_2016.4(Issue6).670.674.

AOAC. (2002a). Crude protein in meat. 928.08. In Official methods of analysis (17th ed.). Gaithersburg, Maryland: Association of Official Analytical Chemists.

AOAC. (2002b). Fat (crude) or ether extract in meat. 960.39. In Official methods of analysis (17th ed.). Gaithersburg, Maryland: Association of Official Analytical Chemists.

Azaza, M. S., Mensi, F., Ksouri, J., Dhraief, M. N., Brini, B., Abdelmouleh, A. & Kraïem, M. M. (2008). Growth of Nile tilapia (Oreochromis niloticus L.) fed with diets containing graded levels of green algae Ulva meal (Ulva rigida) reared in geothermal waters of southern Tunisia. Journal of Applied Ichthyology, 24(2), 202–207. https://doi.org/10.1111/J.1439-0426.2007.01017..x

Balkhasher, A. T., El-Sayed, A., & El-Sayed, A. F. M. (2021). Evaluation of two freshwater macrophytes, Ceratophyllum demersum and Potamogeton amplifolius as feed ingredients for Nile tilapia (Oreochromis niloticus) fingerlings. [IJMS]. Indian Journal of Geo-Marine Sciences, 50(01), 37–43.

Biswas, G., Thirunavukkarasu, A. R., Sundaray, J. K., & Kailasam, K. (2011). Culture of Asian seabass Lates calcarifer (Bloch) in brackishwater tide-fed ponds: Growth and condition factor based on length and weight under two feeding systems. Indian Journal of Fisheries, 58, 53–57.

Bonsdorff, E. (2021). Eutrophication: Early warning signals, ecosystem-level and societal responses, and ways forward : This article belongs to Ambio’s 50th Anniversary Collection. Theme: Eutrophication. Ambio, 50, 753–758. https://doi.org/10.1007/s13280-020-01432-7 PMID:33537960.

Chopin, T., & Tacon, A. G. (2021). Importance of seaweeds and extractive species in global aquaculture production. Reviews in Fisheries Science & Aquaculture, 29(2), 139– 148. https://doi.org/10.1080/23308249.2020.1810626.

Dai, Y., Jia, C., Liang, W., Shenghua, H., & Zhenbin, W. (2012). Effects of the submerged macrophyte Ceratophyllum demersum L. on the restoration of a eutrophic waterbody and its optimal coverage. Ecological Engineering, 40, 113– 116. https://doi.org/10.1016/j.ecoleng.2011.12.023.

Dogan, M., & Demirors Saygideger, S. (2018). Physiological effects of NaCl on Ceratophyllum demersum L., a submerged rootless aquatic macrophyte. Iranian Journal of Fisheries Science, 17(2), 346–356.

Ekdal, A. (2008). Water Quality Modeling of Köyceğiz - Dalyan Lagoon. PhD Thesis, İstanbul Technical University Institute of Science and Technology, Istanbul.

Ergün, S., Soyutürk, M., Güroy, B., Güroy, D., & Merrifield, D. (2009). Influence of Ulva meal on growth, feed utilization, and body composition of juvenile Nile tilapia (Oreochromis niloticus) at two levels of dietary lipid. Aquaculture International, 17(4), 355–361. https://doi.org/10.1007/s10499-008-9207-5.

FAO. (2022). Global Fishery and Aquaculture Production Statistics (FishStatJ).

Fiordelmondo, E., Ceschin, S., Magi, G. E., Mariotti, F., Iaffaldano, N., Galosi, L., & Roncarati, A. (2022). Effects of Partial Substitution of Conventional Protein Sources with Duckweed (Lemna minor) Meal in the Feeding of Rainbow Trout (Oncorhynchus mykiss) on Growth Performances and the Quality Product. Plants, 11(9), 1220. https://doi.org/10.3390/plants11091220 PMID:35567221.

Fletcher, J., Willby, N., Oliver, D. M., & Quilliam, R. S. (2020). Phytoremediation Using Aquatic Plants. In B. R. Schmaefsky (Ed.), Phytoremediation: In-situ Applications (pp. 205–260). Springer Nature Switzerland. https://doi.org/10.1007/978-3-030-00099-8_7.

Foroughi, M., Najafi, P., Toghiani, A., & Honarjoo, N. (2013). Nitrogen Removals by Ceratophyllum demersum from Wastewater. Journal of Residuals Science & Technology., 10(2), 63–68.

Francis, G., Makkar, H. P., & Becker, K. (2001). Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture (Amsterdam, Netherlands), 199(3-4), 197–227. https://doi.org/10.1016/S0044-8486(01)00526-9.

García-Casal, M. N., Pereira, A. C., Leets, I., Ramírez, J., & Quiroga, M. F. (2007). High iron content and bioavailability in humans from four species of marine algae. The Journal of Nutrition, 137(12), 2691–2695. https://doi.org/10.1093/ jn/137.12.2691 PMID:18029485.

Goswami, R. K., Sharma, J., Shrivastav, A. K., Kumar, G., Glencross, B. D., Tocher, D. R., & Chakrabarti, R. (2022). Effect of Lemna minor supplemented diets on growth, digestive physiology and expression of fatty acids biosynthesis genes of Cyprinus carpio. Scientific Reports, 12(1), 3711. https://doi.org/10.1038/s41598-022-07743-x PMID:35260667.

Gürel, M. (2000). Nutrient Dynamics in Coastal Lagoons: Dalyan Lagoon Case Study, PhD Thesis, İstanbul Technical University, Institute of Science and Technology, Istanbul.

Ji, H., Om, A. D., Yoshimatsu, T., Hayashi, M., Umino, T., Nakagawa, H., & Nakagawa, A. (2003). Effect of dietary vitamins C and E fortification on lipid metabolism in red seabream Pagrus major and black seabream Acanthopagrus schlegeli. Fisheries Science, 69(5), 1001–1009. https://doi.org/10.1046/j.1444-2906.2003.00719.x.

Irabor, A. E., Obakanurhie, O., Nwachi, F. O., Ekokotu, P. A., Ekelemu, J. K., Awhefeada, O. K., Adeleke, L. M., Pierre Jrn, H., & Adagha, O. (2022). Duckweed (Lemna minor) meal as partial replacement for fish meal in catfish (Clarias gariepinus) juvenile diets. Livestock Research for Rural Development, 34, 1.

Komara, A. M. M., El-Sayed, A.-F. M., Hamdan, A. M. M., & Makled, S. O. (2022). Use of two freshwater macrophytes, water hyacinth (Eichhornia crassipes) and coontail (Ceratophyllum demersum), as carbohydrate sources in biofloc system for Nile tilapia (Oreochromis niloticus). Aquaculture Research, 00, 1–15. https://doi.org/10.1111/are.15824.

Kováčik, J., Babula, P., & Hedbavny, J. (2017). Comparison of vascular and non-vascular aquatic plant as indicators of cadmium toxicity. Chemosphere, 180, 86–92. https://doi.org/10.1016/j.chemosphere.2017.04.002 PMID:28391156.

Kováčik, J. (2019). Role of low molecular weight compounds in cadmium stress tolerance. In Cadmium Tolerance in Plants (pp. 281–318). Academic Press.

Laining, A., Usman, U., & Syah, R. (2016). Aquatic weed Ceratophyllum sp. as a dietary protein source: Its effects on growth and fillet amino acid profile of rabbitfish, Siganus guttatus. Aquaculture, Aquarium, Conservation & Legislation, 9(2), 352–359.

Mustafa, G., Wakamatsu, S., Takeda, T. A., Umino, T., & Nakagawa, H. (1995). Effects of algae meal as feed additive on growth, feed efficiency, and body composition in red seabream. Fisheries Science, 61(1), 25–28. https://doi.org/10.2331/fishsci.61.25.

National Research Council (NRC). (2011). Nutrient requirements of fish and shrimp. National Academy Press.

New, M. B. (1987). Feed and feeding of fish and shrimp. A manual on the preparation and presentation of compound feeds for shrimp and fish in aquaculture.

Ogino, C. (1980). Requirements of carp and rainbow trout for essential amino acids. Nippon Suisan Gakkaishi.

Omnes, M. H., Le Goasduff, J., Le Delliou, H., Le Bayon, N., Quazuguel, P., & Robin, J. H. (2017). Effects of dietary tannin on growth, feed utilization and digestibility, and carcass composition in juvenile European seabass (Dicentrarchus labrax L.). Aquaculture Reports, 6, 21–27. https://doi.org/10.1016/j.aqrep.2017.01.004.

Patel, D. K., & Kanungo, V. K. (2010). Ecological efficiency of Ceratophyllum demersum Linn in phytoremediation of nutrients from domestic wastewater, The Ecoscan. International Journal (Toronto, Ont.), 4(4), 257–262.

Ponzoni, R. W., James, J. W., Nguyen, N. H., Mekkawy, W., & Khaw, H. L. (2013). Strain comparisons in aquaculture species: a manual. Manual 2013-12. WorldFish. CGIAR Research Program Livestock & Fish.

Rahmah, S., Nasrah, U., Lim, L. S., Ishak, S. D., Rozaini, M. Z. H. & Liew, H. J. (2022). Aquaculture wastewater-raised Azolla as partial alternative dietary protein for Pangasius catfish. Environ Res, 18, 208:112718. doi: 10.1016/j.envres.2022.112718.

Rogers, D. J., & Hori, K. (1993). Marine algal lectins: New developments. Hydrobiologia, 260(1), 589–593. https://doi.org/10.1007/BF00049075.

Samtiya, M., Aluko, R. E., & Dhewa, T. (2020). Plant food antinutritional factors and their reduction strategies: An overview. Food Production. Processing and Nutrition, 2(1), 1–14. https://doi.org/10.1186/s43014-020-0020-5.

Venkatesh, B., & Shetty, H. P. C. (1978). Studies on the growth rate of grass carp, Ctenopharyngodon idella (Valenciennes) fed on two aquatic weeds and terrestrial grass. Aquaculture (Amsterdam, Netherlands), 13, 45–53. https:// doi.org/10.1016/0044-8486(78)90126-6.

Wan, A. H. L., Davies, S. J., Soler-Vila, A., Fitzgerald, R., & Johnson, M. P. (2018). Macroalgae as a sustainable aquafeed ingredient. Reviews in Aquaculture. Advance online publication. https://doi.org/10.1111/raq.12241.

Yaseen, F. H., & Naji AL-Azawey, A. S. (2021). Treatment of Some Contaminants of Waste Water by Using Ceratophyllum demersum. Plant Archives, 21(Supplement 1), 1658–1664. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.S1.261.

Yıldırım, Ö., Ergün, S., Yaman, S., & Türker, A. (2009). Effects of two seaweeds (Ulva lactuca and Enteromorpha linza) as a feed additive in diets on growth performance, feed utilization, and body composition of rainbow trout (Oncorhynchus mykiss). Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 15(3), 455–460.

Downloads

Published

2023-03-18

How to Cite

Kiziloğlu, Ümmühan, Yıldırım, Önder, & Çantaş, İsmail B. (2023). Use of Coontail as a natural phytoremediation feed additive for common carp. Oceanological and Hydrobiological Studies, 52(1), 102–110. https://doi.org/10.26881/oahs-2023.1.08

Issue

Section

Articles