Does the genetic variability of Phragmites australis (Cav.) Trin. ex Steud determine the spatial distribution of the species?

Authors

  • Dariusz Świerk Poznan University of Life Sciences
  • Michał Krzyżaniak Poznan University of Life Sciences
  • Tomasz Kosiada Poznan University of Life Sciences
  • Piotr Urbański Poznan University of Life Sciences
  • Jolanta Behnke-Borowczyk Poznan University of Life Sciences

Keywords:

Phragmites australis, genetic variability, morphological features, soil and bottom sediment chemical content

Abstract

This paper is an attempt to answer the question whether common reed specimens growing in a particular habitat are genetically related. We have tried to identify groups of plants homogeneous in terms of habitat requirements and genetic similarity. Our objective was also to answer the question whether habitat conditions can affect the morphological characteristics of plants. Plants and bottom sediments were collected from 40 sites in central Poland, which differ in soil moisture and the degree of urbanization. Our research and analysis confirm the hypothesis to a certain extent. During the study, we identified three groups of plants homogeneous in terms of habitat and genetic factors (CVA model), which constitute 20% of all examined plants. In our opinion, further research is required on a larger population of P. australis in a larger area. The research revealed that plants growing in moist and wet areas were characterized by higher content of chlorophyll in leaves, longer stems as well as thicker and wider laminae. The common reed plants preferred anthropogenic substrates, which did not contain many nutrients, but were abundant in calcium. Our study confirmed the high tolerance of P. australis to soil salinity.

Downloads

Download data is not yet available.

References

Antonielli, M., Pasqualini, S., Batini, P., Ederli, L., Massacci, A. et al. (2002). Physiological and anatomical characterisation of Phragmites australis leaves. Aquatic Botany 1(72): 55–66.

Arnon, D.I. (1949). Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24(1): 1–15.

Björk, S. (1967). Ecologic investigation of Phragmites communis. Studies in theoretic and applied limnology. Folia Limnol. Scand. 14: 1–248.

Brix, H. (1999). Genetic diversity, ecophysiology and growth dynamics of reed (Phragmites australis). Aquatic Botany 1999(64): 179–184.

Brownlee, C. (2002). Role of the extracellular matrix in cell-cell signalling: Paracrine paradigms. Current Opinion in Plant Biology 5(5): 396–401. DOI: 10.1016/S1369-5266(02)00286-8.

Chen, K.-M., Wang, F., Wang, Y.-H., Chen, T., Hu, Y.-X. et al. (2006). Anatomical and chemical characteristics of foliar vascular bundles in four reed ecotypes adapted to different habitats. Flora - Morphology, Distribution, Functional Ecology of Plants 201(7): 555–569. DOI: 10.1016/j.flora.2005.12.003.

Child, R.D., Summers, J.E., Babij, J., Farrent, J.W. & Bruce, D.M. (2003). Increased resistance to pod shatter is associated with changes in the vascular structure in pods of a resynthesized Brassica napus line. Journal of Experimental Botany 54(389): 1919–1930. DOI: 10.1093/jxb/erg209.

Clevering, O.A., Brix, H. & Lukavská, J. (2001). Geographic variation in growth responses in Phragmites australis. Aquatic Botany 69(2): 89–108.

Clevering, O.A. & Lissner, J. (1999). Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis. Aquatic Botany 64(3–4): 185–208. DOI: 10.1016/S0304-3770(99)00059-5.

Coops, H. & Van der Velde, G. (1996). Effects of waves on helophyte stands: mechanical characteristics of stems of Phragmites australis and Scirpus lacustris. Aquat. Bot. 53: 175–185.

Čurn, V., Kubátová, B., Vávrová, P., Krivácková-Suchá, O. & Čížková, H. (2007). Phenotypic and genotypic variation of Phragmites australis: Comparison of populations in two human-made lakes of different age and history. Aquatic Botany 86(4): 321–330. DOI: 10.1016/j.aquabot.2006.11.010.

Dinka, M. (1986). The effect of mineral nutrient enrichment of Lake Balaton on the common reed (Phragmites australis). Folia Geobot. Phytotax. 21: 65–84.

Doyle, J., & Doyle, J. (1987). A rapid DNA isolation procedurę for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.

Dykyjová, D., Hejny, S. & Kvet, J. (1973). Proposal for international comparative investigations of production by stands of reed Phragmites communis. Folia Geobot. Phytotax. 8: 435–442.

Dykyjová, D. & Hradecká, D. (1976). Production ecology of Phragmites communis I. Relations of two ecotypes to microclimate and nutrient conditions of habitat. Folia Geobot. Phytotax. 11: 23–61.

Engloner, A.I. (2004). Annual growth dynamics and morphological differences of reed (Phragmites australis [Cav.] Trin. ex Steudel) in relation to water supply. Flora – Morphology, Distribution, Functional Ecology of Plants 199(3): 256–262. DOI: 10.1078/0367-2530-00153.

Engloner, A.I. (2009). Structure, growth dynamics and biomass of reed (Phragmites australis) – A review. Flora: Morphology, Distribution, Functional Ecology of Plants 204(5): 331–346. DOI: 10.1016/j.flora.2008.05.001.

Enstone, D.E., Peterson, C.A. & Ma, F. (2003). Root endodermis and exodermis: Structure, function, and responses to the environment. Journal of Plant Growth Regulation 21: 335–351.

Equiza, M.A. & Tognetti, J.A. (2002). Morphological plasticity of spring and winter wheats in response to changing temperatures. Functional Plant Biology 29(12): 1427–1436. DOI: 10.1071/FP02066.

Gorai, M., Vadel, A.M., Neffati, M. & Khemira, H. (2007). The Effect of Sodium Chloride Salinity on the Growth, Water Status and Ion Content of Phragmites communis Trin. Pakistan Journal of Biological Sciences 10(13): 2225–2230. DOI: 10.3923/pjbs.2007.2225.2230.

Güsewell, S. & Klötzli, F. (2000). Assessment of aquatic and terrestrial reed (Phragmites australis) stands. Wetlands Ecology and Management 8(6): 367–373. DOI: 10.1023/A:1026524916500.

Hardej, M. & Ozimek, T. (2002). The effect of sewage sludge flooding on growth and morphometric parameters of Phragmites australis (Cav.) Trin. ex Steudel. Ecol. Eng. 18: 343–350.

Hartmann, K., Peiter, E., Koch, K., Schubert, S. & Schreiber, L. (2002). Chemical composition and ultrastructure of broad bean (Vicia faba L.) nodule endodermis in comparison to the root endodermis. Planta 215(1): 14–25. DOI: 10.1007/s00425-001-0715-z.

Hose, E., Clarkson, D.T., Steudle, E., Schreiber, L. & Hartung, W. (2001). The exodermis: A variable apoplastic barrier. Journal of Experimental Botany 52(365): 2245–2264.

Kączkowski, J. (2003). Structure, function and metabolism of plant cell wall. Acta Physiologiae Plantarum 25(3): 287–305.

Kawashima, C.G., Berkowitz, O., Hell, R., Noji, M. & Saito, K. (2005). Characterization and expression analysis of a serine acetyltransferase gene family involved in a key step of the sulfur assimilation pathway in arabidopsis. Plant Physiology 137(1): 220–230. DOI: 10.1104/pp.104.045377.

Komosa, A. & Roszyk, J. (2006). The causes and prevention of Rogalin Oaks’ death. Acta Agrophysica 7(4): 937–946. (In Polish).

Koppitz, H. (1999). Analysis of genetic diversity among selected populations of Phragmites australis world-wide. Aquatic Botany 64(3–4): 209–221. DOI: 10.1016/S0304-3770(99)00051-0.

Ksenofontova, T. (1988). Morphology, production and mineral contents in Phragmites australis in different waterbodies of the Estonian SSR. Folia Geobot. Phytotax. 23: 17–43.

Lis, J. & Pasieczna, A. (2005). Geochemical maps of Poznań and surroundings: Soils, water sediments and reservoirs. 1:100 000. Warszawa: Państwowy Instytut Geologiczny. (In Polish).

Lissner, J., Schierup, H.-H., Comın, F.A. & Astorga, V. (1999). Effect of climate on the salt tolerance of two Phragmites australis populations. Aquatic Botany 64(3–4): 317–333. DOI: 10.1016/S0304-3770(99)00060-1.

Liu, Y., Li, X., Liu, M., Cao, B., Tan, H. et al. (2012). Responses of three different ecotypes of reed (Phragmites communis Trin.) to their natural habitats: Leaf surface micro-morphology, anatomy, chloroplast ultrastructure and physio-chemical characteristics. Plant Physiology and Biochemistry 51: 159–167. DOI: 10.1016/j.plaphy.2011.11.002.

Lollar, B.S. (2005). Environmental geochemistry. In H.D. Holland & K.K. Turekian (Eds.), Treatise on Geochemistry, Volume 9 (648 pp.). Elsevier Science.

Mann, E.E., Rice, K.C., Boles, B.R., Endres, J.L., Ranjit, D. et al. (2014). Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS ONE 4(6): e5822. DOI: 10.1371/journal.pone.0005822.

McKee, J. & Richards, A.J. (1996). Variation in seed production and germinability in common reed (Phragmites australis) in Britain and France with respect to climate. New Phytologist 133(2): 233–243. DOI: 10.1111/j.1469-8137.1996.tb01890.x.

Nei, M. & Li, W.H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences 76(10): 5269–5273.

Neuhaus, D., Kühl, H., Kohl, J.-G., Dörfel, P. & Börner, T. (1993). Investigation on the genetic diversity of Phragmites stands using genomic fingerprinting. Aquatic Botany 45(4): 357–364. DOI: 10.1016/0304-3770(93)90034-T.

Ostendorp, W. (1991). Damage by episodic flooding to Phragmites reeds in a prealpine lake: proposal of a model. Oecologia 86: 119–124.

Paucã-Comãnescu, M., Clevering, O.A., Hanganu, J. & Gridin, M. (1999). Phenotypic differences among ploidy levels of Phragmites australis growing in Romania. Aquatic Botany 64(3): 223–234. DOI: 10.1016/S0304-3770(99)00052-2.

Rocha, A.C.S., Almeida, C.M.R., Basto, M.C.P. & Vasconcelos, M.T.S.D. (2014). Antioxidant response of Phragmites australis to Cu and Cd contamination. Ecotoxicology and Environmental Safety 109: 152–160. DOI: 10.1016/j.ecoenv.2014.06.027.

Romero, J.A., Brix, H. & Comın, F.A. (1999). Interactive effects of N and P on growth, nutrient allocation and NH4 uptake kinetics by Phragmites australis. Aquatic Botany 64(3): 369–380.

Sabba, R.P. & Lulai, E.C. (2002). Histological analysis of the maturation of native and wound periderm in potato (Solanum tuberosum L.) tuber. Annals of Botany 90(1): 1–10. DOI: 10.1093/aob/mcf147.

Šmilauer, P. & Lepš, J. (2003). Multivariate Analysis of Ecological Data using CANOCO. Cambridge University Press.

Šorša, A., Peh, Z. & Halamic, J. (2018). Geochemical mapping the urban and industrial legacy of Sisak, Croatia, using discriminant function analysis of topsoil chemical data. Journal of Geochemical Exploration 187(2018): 155–167. DOI: 10.1016/j.gexplo.2017.07.014.

Squires, L. & Van der Valk, A.G. (1992). Water-depth tolerances of the dominant emergent macrophytes of the Delta Marsh, Manitoba. Can. J. Bot. 70: 1860–1867.

Van der Putten, W.H., Peters, B.A.M. & Van der Berg, M.S. (1997). Effects of litter on substrate conditions and growth of emergent macrophytes. New Phytol. 135: 527–537.

Wang, H.L., Hao, L.M., Wen, J.Q., Zhang, C.L. & Liang, H.G. (1998). Differential expression of photosynthesisrelated genes of reed ecotypes in response to drought and saline habitats. Photosynthetica 35(1): 61–69. DOI: 10.1023/A:1006817714739.

Wang, L.-W., Showalter, A.M., & Ungar, I.A. (1997). Effect of salinity on growth, ion content, and cell wall chemistry in Atriplex prostrata (Chenopodiaceae). American Journal of Botany 84(9): 1247–1255.

White, S.D. & Ganf, G.G. (2002). A comparison of the morphology, gas space anatomy and potential for internal aeration in Phragmites australis under variable and static water regimes. Aquat. Bot. 73: 115–127.

Willson, K.G., Perantoni, A.N., Berry, Z.C., Eicholtz, M.I., Tamukong, Y.B. et al. (2017). Influences of reduced iron and magnesium on growth andphotosynthetic performance of Phragmites australis subsp. americanus (North American common reed). Aquatic Botany 137(2017): 30–38. DOI: 10.1016/j.aquabot.2016.11.005.

Zeidler, A., Schneider, S., Jung, C., Melchinger, A.E. & Dittrich, P. (1994). The Use of DNA Fingerprinting in Ecological Studies of Phragmites australis (Cav.) Trin. ex Steudel. Botanica Acta 107(4): 237–242. DOI: 10.1111/j.1438-8677.1994.tb00791.x.

Zhu, X., Jing, Y., Chen, G., Wang, S. & Zhang, C. (2003). Solute levels and osmoregulatory enzyme activities in reed plants adapted to drought and saline habitats. Plant Growth Regulation 41(2): 165–172. DOI: 10.1023/A:1027381006811.

Zwieniecki, M.A., Orians, C.M., Melcher, P.J. & Holbrook, N.M. (2003). Ionic control of the lateral exchange of water between vascular bundles in tomato. Journal of Experimental Botany 54(386): 1399–1405. DOI: 10.1093/jxb/erg144.

Downloads

Published

2018-12-17

How to Cite

Świerk, D., Krzyżaniak, M., Kosiada, T., Urbański, P., & Behnke-Borowczyk, J. (2018). Does the genetic variability of Phragmites australis (Cav.) Trin. ex Steud determine the spatial distribution of the species?. Oceanological and Hydrobiological Studies, 47(4), 405–414. Retrieved from https://czasopisma.bg.ug.edu.pl/index.php/oandhs/article/view/8597

Issue

Section

Articles