Impact of the 2014 Major Baltic Inflow on benthic fluxes of ferrous iron and phosphate below the permanent halocline in the southern Baltic Sea

Authors

  • Olga Brocławik University of Gdansk
  • Katarzyna Łukawska-Matuszewska University of Gdansk
  • Jerzy Bolałek University of Gdansk

Keywords:

iron, phosphate, benthic fluxes, Baltic inflows, pore water, Baltic Sea

Abstract

The impact of 2014 Major Baltic Inflow (MBI) on ferrous iron (FFe(II)) and phosphate (FPO43−) benthic fluxes was investigated. Sampling took place few months after the MBI, in August 2015, and over one year after the inflow, in February 2016. Materials were collected from three sites (depth of 106–108 m) located in the Gdansk Deep. Total dissolved iron, Fe(II), phosphate, H2S and sulfate were analyzed in bottom and pore water. Benthic fluxes were estimated using Fick’s first law. All fluxes were directed from sediment. FFe(II) ranged from 0.31 × 10−2 to 1.25 × 10−2 μmol m−2 hr−1 and FPO43− from 1.53 to 2.70 μmol m−2 hr−1. At the deepest site, FFe(II) was similar in both seasons, while at two other sites fluxes in August 2015 were 40–50% smaller than in February 2016. The increase in bottom water oxygen after the MBI enhanced Fe(oxyhydr)oxides formation. As a consequence, bottom and pore water concentrations of Fe(II) and FFe(II), decreased. Adsorption of phosphate onto Fe(oxyhydr)oxides resulted in binding of P in surface sediment and lower FPO43− in August 2015. This was particularly evident at the shallowest site. The reductive dissolution of Fe(oxyhydr)oxides and desorption of P during the subsequent months resulted in higher FPO43− in February 2016.

Downloads

Download data is not yet available.

References

Almroth, E., Tengberg, A., Andersson, J.H., Pakhomova, S. & Hall, P.O.J. (2009). Effects of resuspension on benthic fluxes of oxygen, nutrients, dissolved inorganic carbon, iron and manganese in the Gulf of Finland, Baltic Sea. Cont. Shelf Res. 29: 807–818. DOI: 10.1016/j.csr.2008.12.011.

Andrulewicz, E. & Witek, Z. (2002). Antropogenic pressure and environmental effects on the Gulf of Gdańsk: recent Management Efforts. In G. Schernewski & U. Schiewer (Eds.), Baltic Coastal Ecosystems (pp. 124–139). Springer-Verlag, Berlin Heidelberg. DOI: 10.1007/978-3-662-04769-9.

Balzer, W. (1986). Forms of phosphorus and its accumulation in coastal sediments of Kieler Bucht. Ophelia 26(1): 19–35. DOI: 10.1080/00785326.1986.10421976.

Berner, R.A. (1977). Stoichiometric models for nutrient regeneration in anoxic sediment. Limnol. Oceanogr. 22(5): 781–786. DOI: 10.4319/lo.1977.22.5.0781.

Bolałek, J. (1992). Phosphate at the water-sediment interface in Puck Bay. Oceanologia. 33: 159–182.

Boudreau, B.P. (1996). The diffusive tortuosity of fine-grained unlithified sediments. Geochim. Cosmochim. Acta. 60(16): 3139–3142. DOI: 10.1016/0016-7037(96)00158-5.

Brodecka, A., Majewski, P., Bolałek, J. & Klusek, Z. (2013). Geochemical and acoustic evidence for the occurrence of methane in sediments of the Polish sector of the southern Baltic Sea. Oceanologia 55: 951–978.

Canfield, D.E. (1993). Organic matter oxidation in marine sediments. In R. Wollast, F.T. Mackenzie & L. Chou (Eds.), Interactions of C, N, P and S Biogeochemical Cycles and Global Change (pp. 333–363). NATO ASI Series 4. Springer. DOI: 10.1007/978-3-642-76064-8.

Canfield, D.E., Jørgensen, B.B., Fossing, H., Glud, R., Gundersen, J. et al. (1993). Pathways of organic carbon oxidation in three continental marine sediments. Mar. Geol. 113(1–2): 27–40. DOI: 10.1016/0025-3227(93)90147-N.

Carman, R. & Rahm, L. (1997). Early diagenesis and chemical characteristics of interstitial water and sediments in the deep deposition bottoms of the Baltic proper. J. Sea Res. 37(1–2): 25–47. DOI: 10.1016/S1385-1101(96)00003-2.

Denis, L. & Grenz, C. (2003). Spatial variability in oxygen and nutrient fluxes at the sediment-water interface on the continental shelf in the Gulf of Lions (NW Mediterranean). Oceanol. Acta 26: 373–389.

Dijkstra, N., Slomp, C.P. & Behrends, T. (2016). Vivianite is a key sink for phosphorus in sediments of the Landsort Deep, an intermittently anoxic deep basin in the Baltic Sea. Chem. Geol. 438: 58–72. DOI: 10.1016/j.chemgeo.2016.05.025.

Glud, R.N., Gundersen, J.K., Jørgensen, B.B., Revsbech, N.P. & Schulz, H.D. (1994). Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements. Deep-Sea Res. 41(11–12): 1767–1788. DOI: 10.1016/0967-0637(94)90072-8.

Graca, B., Witek, Z., Burska, D., Białkowska, I., Łukawska-Matuszewska, K. et al. (2006). Pore water phosphate and ammonia below the permanent halocline in the southeastern Baltic Sea and their benthic fluxes under anoxic conditions. J. Mar. Syst. 63(3–4): 141–154. DOI: 10.1016/j.jmarsys.2006.06.003.

Graca, B. (2009). The Dynamics of Nitrogen and Phosphorus Transformations in Sediment–Water Interface in the Gulf of Gdańsk. University of Gdańsk. Gdańsk. (In Polish).

Grasshoff, K., Kremling, K. & Ehrhardt, M. (1999). Methods of seawater analysis 3., completely rev. and extended ed. Wiley-VCH. Weinheim.

Hartnett, H.E., Keil, R.G., Hedges, J.I. & Devol, A.H. (1998). Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391: 572–574. DOI: 10.1038/35351.

Ignatieva, N.V. (1999). Nutrient exchange across the sedimentwater interface in the eastern Gulf of Finland. Boreal Env. Res. 4: 295–305.

Ingall, E.D., Bustin, R.M. & Van Cappellen, P. (1993). Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochim. Cosmochim. Acta 57(2): 303–316. DOI: 10.1016/0016-7037(93)90433-W.

Jankowski, A. (1996). Vertical water circulation in the southern Baltic and its environmental implications. Oceanology 38: 485–503.

Jäntti, H. & Hietanen, S. (2012). The effects of hypoxia on sediment nitrogen cycling in the Baltic Sea. Ambio 41(2): 161–169. DOI: 10.1007/s13280-011-0233-6.

Jensen, H.S., Mortensen P.B., Andersen F.O., Rasmussen E. & Jensen A. (1995). Phosphorus cycling in a coastal marine sediment, Aarhus Bay, Denmark. Limnol. Oceanogr. 40(5): 908–917. DOI: 10.4319/lo.1995.40.5.0908.

Johnson, K.S., Chavez, F.P. & Friederich, G.E. (1999). Continentalshelf sediment as a primary source of iron for coastal plankton. Nature 398: 697–700. DOI: 10.1038/19511.

Jørgensen, B.B. (1982). Mineralization of organic matter in the sea bed – The role of sulfate reduction. Nature. 296: 643–645. DOI: 1 0.1038/296643a0.

Jørgensen, B.B., Bang, M. & Blackburn, T.H. (1990). Anaerobic mineralization in marine sediments from the Baltic Sea-North Sea transition. Mar. Ecol. Prog. Ser. 59: 39–54. DOI: 10.3354/meps059039.

Klump, J.V. & Martens, C.S. (1981). Biogeochemical cycling in an organic rich coastal marine basin: II. Nutrient sedimentwater exchange processes. Geochim. Cosmochim. Acta 45(1): 101–121. DOI: 10.1016/0016-7037(81)90267-2.

Krom, M.D. & Berner, R.A. (1980). Adsorption of phosphate in anoxic marine sediments. Limnol. Oceanogr. 25(5): 797–806. DOI: 10.4319/lo.1980.25.5.0797.

Kruk-Dowgiałło, L. & Szaniawska, A. (2008). Gulf of Gdańsk and Puck Bay. In U. Schiewer (Ed.), Ecology of Baltic Coastal Water (pp. 139–166). Ecological Studies 197: Springer-Verlag, Berlin Heidelberg. DOI: 10.1007/978-3-540-73524-3_7.

Ku, W.C., Di Giano, F.A. & Feng, T.H. (1978). Factors affecting phosphate adsorption equilibria in lake sediments. Wat. Res. 12(12): 1069–1074. DOI: 10.1016/0043-1354(78)90052-0.

Lavery, P.S., Oldham, C.E. & Ghisalberti, M. (2001). The use of Fick’s First Law for predicting porewater nutrient fluxes under diffusive conditions. Hydrol. Process. 15: 2435– 2451. DOI: 10.1002/hyp.297.

Lehtoranta, J. & Heiskanen, A.S. (2003). Dissolved iron: phosphate ratio as an indicator of phosphate release to oxic water of the inner and outer coastal Baltic Sea. Hydrobiologia 492(1–3): 69–84. DOI: 10.1023/A:1024822013580.

Lehtoranta, J., Ekholm, P. & Pitkänen, H. (2009). Coastal eutrophication thresholds: A matter of sedyment microbiol processes. Ambio 38(6): 303–308. DOI: 10.1579/09-A-656.1.

Li, Y-H. & Gregory, S. (1974). Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 38(5): 703–714. DOI: 10.1016/0016-7037(74)90145-8.

Łukawska-Matuszewska, K. & Burska, D. (2011). Phosphate exchange across the sediment – water interface under oxic and hypoxic/anoxic conditions in the southern Baltic Sea. Oceanol. Hydrobiol. Stud. 40(2): 57–71. DOI: 10.2478/s13545-011-0017-4.

Łukawska-Matuszewska, K. & Kiełczewska, J. (2016). Effects of near-bottom water oxygen concentration on biogeochemical cycling of C, N and S in sediments of the Gulf of Gdansk (southern Baltic). Cont. Shelf Res. 117: 30–42. DOI: 10.1016/j.csr.2016.02.001.

Łukawska-Matuszewska, K. & Bolałek J. (2008). Spatial distribution of phosphorus forms in sediments in the Gulf of Gdansk (southern Baltic Sea). Cont. Shelf Res. 28(7): 977– 990. DOI: 10.1016/j.csr.2008.01.009.

Millero, F.J., Sotolongo, S. & Izaguirre, M. (1987). The oxidation kinetics of Fe(II) in seawater. Geochim. Cosmochim. Acta 51(4): 793–801. DOI: 10.1016/0016-7037(87)90093-7.

Mohrholz, V., Naumann, M., Nausch, G., Krüger, S. & Gräwe, U. (2015). Fresh oxygen for the Baltic Sea – An exceptional saline inflow after a decade of stagnation. J. Mar. Sys. 148: 152–166. DOI: 10.1016/j.jmarsys.2015.03.005.

Mortimer, C.H. (1941). The exchange of dissolved substances between mud and water in lakes. J. Ecol. 29(1): 280–329. DOI: 10.2307/2256691.

Mortimer, R.J.G., Davey, J.T., Krom, M.D., Watson, P.G., Frickers, P.E. et al. (1999). The effect of macrofauna on porewater profiles and nutrient fluxes in the intertidal zone of the Humber Estuary. Estuar. Coast. Shelf Sci. 48(6): 683–699. DOI: 10.1006/ecss.1999.0479.

Nausch, M., Nausch, G., Lass, H.U., Mohrholz, V., Nagel, K. et al. (2009). Phosphorus input by upwelling in the eastern Gotland Basin (Baltic Sea) in summer and its effects on filamentous cyanobacteria. Estuar. Coast. Shelf Sci. 83(4): 434–442. DOI: 10.1016/j.ecss.2009.04.031.

Noffke, A., Sommer, S., Dale, A.W., Hall, P.O.J. & Pfannkuche, O. (2015). Benthic nutrient fluxes in the Eastern Gotland Basin (Baltic Sea) with particular focus on microbial mat ecosystems. J. Mar. Sys. 158: 1–12. DOI: 10.1016/j.jmarsys.2016.01.007.

Pakhomova, S.V., Hall, P.O.J., Kononets, M.Y., Rozanov, A.G., Tengberg, A. et al. (2007). Fluxes of iron and manganese across the sediment-water interface under various redox conditions. Mar. Chem. 107(3): 319–331. DOI: 10.1016/j.marchem.2007.06.001.

Raiswell R. & Canfield D.E. (2012). The iron biogeochemical cycle. Past and Present. Geochemical Perspectives 1. European Association of Geochemistry. Retrived June 6, 2016, http://www.geochemicalperspectives.org/online/v1n1. DOI: 10.7185/geochempersp.1.1.

Rak, D. (2016). The inflow in the Baltic Proper as recorded in January–February 2015. Oceanologia 58: 241–247. DOI: 10.1016/j.oceano.2016.04.001.

Reeburgh, W.S. (1983). Rates of biogeochemical processes in anoxic sediments. Ann. Rev. Earth Planet. Sci. 11: 269–298. DOI: 10.1146/annurev.ea.11.050183.001413.

Reed, D.C., Slomp, C.P. & Gustafsson, B.G. (2011). Sedimentary phosphorus dynamics and the evolution of bottom-water hypoxia: Acoupled benthic-pelagic model of a coastal system. Limnol. Oceanogr. 56(3): 1075–1092. DOI: 10.4319/lo.2011.56.3.1075.

Rickard, D. & Luther, G.W. (1997). Kinetics of pyrite formation by the H2S oxidation of iron(II) monosulfide in aqueous solutions between 25 and 125 degrees C: the mechanism. Geochim. Cosmochim. Acta 61(1): 135–147. DOI: 10.1016/S0016-7037(96)00321-3.

Rothe, M., Kleeberg, A. & Hupfer, M. (2016). The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments. Earth-Sci. Rev. 158: 51–64. DOI: 10.1016/j.earscirev.2016.04.008.

Rozan, T.F., Taillefert, M., Trouwborst, R.E., Glazer, B.T. Ma, S. et al. (2002). Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: Implications for sediment nutrient release and benthic macroalgal blooms. Limnol. Oceanogr. 47(5): 1346–1354. DOI: 10.4319/lo.2002.47.5.1346.

Ruttenberg, K.C. & Berner, R.A. (1993). Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments. Geochim. Cosmochim. Acta 57(5): 991–1007. DOI: 10.1016/0016-7037(93)90035-U.

Rydin, E., Malmaeus, J.M., Karlsson, O.M. & Jonsson, P. (2011). Phosphorus release from coastal Baltic Sea sediments as estimated from sediment profiles. Estuar. Coast. Shelf Sci. 92(1): 111–117. DOI: 10.1016/j.ecss.2010.12.020.

Santschi, P., Höhener, P., Benoit, G. & Buchholtz-ten Brink, M. (1990). Chemical processes at the sediment water interface. Mar. Chem. 30: 269–315. DOI: 10.1016/0304-4203(90)90076-O.

Slomp, C.P., Epping, E.H.G., Helder, W. & Raaphorst, W.V. (1996). A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic Continental platform sediments. J. Mar. Res. 54(6): 1179–1205. DOI: 10.1357/0022240963213745.

Srithongouthai, S., Sonoyama, Y., Tada, K. & Montani, S. (2003). The in uence of environmental variability on silicate exchange rate between sediment and water in a shallowwater coastal ecosystem, the Seto Inland Sea, Japan. Mar. Pollut. Bull. 47: 10–17.

Stumm, W. & Morgan, J.J. (1981). Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. Wiley-Interscience Publication, John Wiley and Sons, New York.

Sundby, B., Anderson, L.G., Hall, P.O.J., Iverfeldt, A., Rutgers van der Loeff, M. et al. (1986). The effect of oxygen on release and uptake of cobalt, manganese, iron and phosphate at the sediment-water interface. Geochim. Cosmochim. Acta 50: 1281–1288. DOI: 10.1016/0016-7037(86)90411-4.

Sundby, B., Cobeil C., Silverberg N. & Mucci A. (1992). The phosphorus cycle in coastal marine sediments. Limnol. Oceanogr. 37(6): 1129–1145. DOI: 10.4319/lo.1992.37.6.1129.

Suplińska, M.M. (2002). Vertical distribution of 137Cs, 210Pb, 226Ra and 239, 240Pu in bottom sediments from the Southern Baltic Sea in the years 1998–2000. Nukleonika. 47(2): 45–52.

Szczepańska, T. & Uscinowicz, Sz. (1994). Geochemical atlas of the southern Baltic Sea: 1:500,000. Polish Geological Institute, Warsaw. (In Polish).

Tengberg, A., Ståhl, H., Gust, G., Muller, V., Arning, U. et al. (2004). Intercalibration of benthic flux chambers: I. Accuracy of flux measurements and influence of chamber hydrodynamics. Progress in Oceanography. 60(1): 1–28. DOI: 10.1016/j.pocean.2003.12.001.

Thamdrup, B. & Canfield, D.E. (1996). Pathways of carbon oxidation in continental margin sediments off central Chile. Limnol. Oceanogr. 41(8): 1629–1650. DOI: 10.4319/lo.1996.41.8.1629.

Urban, N.R., Dinkel, C. & Wehril, B. (1997). Solute transfer across the sediment surface of a eutrophic lake: I. Porewater profiles from dialysis sampler. Aquat. Sci. 59: 1–25.

Downloads

Published

2018-09-24

How to Cite

Brocławik, O., Łukawska-Matuszewska, K., & Bolałek, J. (2018). Impact of the 2014 Major Baltic Inflow on benthic fluxes of ferrous iron and phosphate below the permanent halocline in the southern Baltic Sea. Oceanological and Hydrobiological Studies, 47(3), 275–287. Retrieved from https://czasopisma.bg.ug.edu.pl/index.php/oandhs/article/view/8605

Issue

Section

Articles