Microbial and classic food web components under ice cover in eutrophic lakes of different morphometry and fisheries management

Authors

  • Krystyna Kalinowska Inland Fisheries Institute in Olsztyn
  • Agnieszka Napiórkowska-Krzebietke Inland Fisheries Institute in Olsztyn
  • Elżbieta Bogacka-Kapusta Inland Fisheries Institute in Olsztyn
  • Joanna Hutorowicz Inland Fisheries Institute in Olsztyn
  • Jakub Pyka Inland Fisheries Institute in Olsztyn
  • Konrad Stawecki Inland Fisheries Institute in Olsztyn
  • Andrzej Kapusta Inland Fisheries Institute in Olsztyn
  • Łucjan Chybowski Inland Fisheries Institute in Olsztyn

Keywords:

winter, ice cover, protists, phytoplankton, rotifers, crustaceans, fish stocking, eutrophic lakes

Abstract

The thickness and duration of ice cover are strongly influenced by global warming. The aim of this study was to determine chemical (organic carbon, total nitrogen and phosphorus concentrations) and biological (nanoflagellates, ciliates, phytoplankton, rotifers, crustaceans) parameters under the ice cover in three eutrophic lakes (Masurian Lake District, Poland), differing in their morphometry and fisheries management. All the studied groups of organisms showed high variability over a short time. Taxonomic composition of planktonic communities, except for rotifers and phytoplankton, was similar in all lakes. Nanoflagellates were dominated by autotrophic forms, while ciliates were primarily composed of small oligotrichs and prostomatids. Nano-sized diatoms and mixotrophic cryptophytes were the most important components of phytoplankton and they formed an under-ice bloom in one lake only. Rotifers were mainly represented by Keratella cochlearis, Polyarthra dolichoptera and Asplanchna priodonta. Among crustaceans, copepods clearly dominated over cladocerans. Our research suggests that winter was a very dynamic period. In the under-ice conditions, pelagic organisms were strongly dependent on each other. The shallow lake and the deeper, small lake differed significantly in nutrient and chlorophyll concentrations, ciliate and phytoplankton biomass and the ratio of autotrophic to heterotrophic biomass. These results suggest that morphometric parameters may affect planktonic organisms during the ice-covered period.

Downloads

Download data is not yet available.

References

Adrian, R., Walz, N., Hintze, T., Hoeg, S. & Rusche, R. (1999). Effect of ice duration on plankton succession during spring in a shallow polimictic lake. Freshwat. Biol. 41: 621-632.

Agbeti, M.D., Kingston, J.C., Smol, J.C. & Watters, C. (1997). Comparison of phytoplankton succession in two lakes of different mixing regimes. Arch. Hydrobiol. 140: 37-69.

Agbeti, M.D. & Smol, J.R. (1995). Winter limnology: a comparison of physical, chemical and biological characteristics in two temperate lakes during ice cover. Hydrobiologia 304: 221-234.

Babanazarova, O., Sidelev, S. & Schischeleva, S. (2013). The structure of winter phytoplankton in Lake Nero, Russia, a hypertrophic lake dominated by Planktothrix-like Cyanobacteria. Aquat. Biosyst. 9: 18.

Balayla, D., Lauridsen, T.L., Søndergaard, M. & Jeppesen, E. (2010). Larger zooplankton in Danish lakes after cold winters: are winter fish kills of importance? Hydrobiologia 649: 159-172. DOI: 10.1007/s10750-010-0164-4.

Bastviken, D., Ejlertsson, J., Sundh, I. & Tranvik, L.J. (2003). Methane as a source of carbon and energy for lake pelagic food webs. Ecology 84: 969-981. DOI: 10.1890/0012-9658(2003)084[0969:MAASOC]2.0.CO;2.

Bertilsson, S., Burgin, A., Carey, C.C., Fey, S.B., Grossart, H.-P. et al. (2013). The under-ice microbiome of seasonally frozen lakes. Limnol. Oceanogr. 58: 1998-2012.

Bižic-Ionescu, M., Amann, R. & Grossart, H.-P. (2014). Massive regime shifts and high activity of heterotrophic bacteria in an ice-covered lake. PLoS ONE 9(11): e113611. DOI: 10.1371/journal.pone.0113611.

Bolsenga, S.J. & Vanderploeg, H.A. (1992). Estimating photosynthetically available radiation into open and ice covered freshwater lakes from surface characteristics; a high transmittance case study. Hydrobiologia 243/244: 95-104.

Borics, G., Tóthmérész, B., Várbíró, G., Grigorszky, I., Czébely, A. et al. (2016). Functional phytoplankton distribution in hypertrophic systems across water body size. Hydrobiologia 764: 81-90. DOI: 10.1007/s10750-015-2268-3.

Børsheim, K.Y. & Bratbak, G. (1987). Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. Enriched from seawater. Mar. Ecol. Prog. Ser. 36: 171-175.

Bottrell, H.H., Duncan, A., Gliwicz, Z.M., Grygierek, E., Herzig, A. et al. (1976). A review of some problems in zooplankton production studies. Norw. J. Zool. 24: 419-456.

Chróst, R.J. (1986). Algal-bacterial metabolic coupling in the carbon and phosphorus cycle in lakes. In F. Megusar & M. Gantar (Eds.), Perspectives in Microbial Ecology (pp. 360-366). Proc. IV ISME.

Danilov, R.A. & Ekelund, N.G.A. (2001). Phytoplankton communities at different depths in two eutrophic and two oligotrophic temperate lakes at higher latitude during the period of ice cover. Acta Protozool. 40: 197-201.

Dokulil, M.T. & Herzig, A. (2009). An analysis of long-term winter data on phytoplankton and zooplankton in Neusiedler See, a shallow temperate lake, Austria. Aquat. Ecol. DOI: 10.1007/s10452-009-9282-3.

Ejsmont-Karabin, J. (1998). Empirical equations for biomass calculation of planktonic rotifers. Pol. Arch. Hydrobiol. 45: 513-522.

Fee, E.J., Shearer, J.A., De Bruyn, E.R. & Schnidler, D.W. (1992). Effects of lake size on phytoplankton photosynthesis. Can. J. Fish. Aquat. Sci. 49: 2445-2459.

Flössner, D. (1972). Krebstiere (Crustacea), Kiemen- und Blattfüßer (Branchiopoda), Fischläuse (Branchiura). Jena: VEB Gustav Fischer Verlag.

Foissner, W., Berger, H. & Schaumburg, J. (1999). Identification and ecology of limnetic plankton ciliates. Informationberichte des Bayer Landesamtes für Wasserwirtschaft, München.

Golterman, H.L. (1969). Methods for Chemical Analysis of Fresh Waters. IBP Handbook No 8. Blackwell Scientific Publications, Oxford, Edinburgh.

Guildford, S.J., Hendzel, L.L., Kling, H.J., Fee, E.J., Robinson, G.C.G. et al. (1994). Effects of lake size on phytoplankton nutrient status. Can. J. Fish. Aquat. Sci. 51: 2769-2783.

Guinder, V.A., López-Abbate, M.C., Berasategui, A.A., Negrin, V.L., Zapperi, G. et al. (2015). Influence of the winter phytoplankton bloom on the settled material in a temperate shallow estuary. Oceanologia 57: 50-60.

Guiry, M.D. & Guiry, G.M. (2016). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 13 October 2016.

Haberyan, K.A. (2016). Mozingo Studies I. Ice phenology and limnological legacies in a mid-continental reservoir. J. Limnol. 75: 369-376.

Huber-Pestalozzi, G. (1983). Das phytoplankton des Süßwassers. Systematik und Biologie. 7 Teil, 1 Häfte: Chlorophyceae (Grünalgen) Ordnung Chlorococcales. In: A. Thienemann (Ed.), Die Binnengewässer Einzeldarstellungen aus der Limnologie und ihren Nachbargebieten (pp. 1-1044). E. Schweizerbart’sche Verlasbuchhandlung, Stuttgart.

Kalinowska, K. & Grabowska, M. (2016). Autotrophic and heterotrophic plankton under ice in a eutrophic temperate lake. Hydrobiologia 777: 111-118. DOI: 10.1007/s10750-016-2769-8.

Kalinowska, K., Guspiel, A., Kiersztyn, B. & Chróst, R.J. (2013). Factors controlling bacteria and protists in selected Mazurian eutrophic lakes (North-Eastern Poland) during spring. Aquat. Biosyst. 9: 9. DOI: 10.1186/2046-9063-9-9.

Kirillin, G., Leppäranta, M., Terzhevik, A., Granin, N., Bernhardt, J. et al. (2012). Physics of seasonally ice-covered lakes: a review. Aquat. Sci. 74: 659-682.

Komárek, J. & Anagnostidis, K. (2005). Cyanoprokaryota 2. Teil: Oscillatoriales. In: A. Pascher (Ed.), Süßwasserflora von Mitteleuropa (pp. 1-759). Gustaw Fischer Jena-Stuttgart-Lübeck Ulm.

Krammer, K. & Lange-Bertalot, H. (1986). Bacillariophyceae 1. Teil: Naviculaceae. In: A. Pascher (Ed.), Süßwasserflora von Mitteleuropa (pp. 1-876). VEB Gustaw Fischer Verlag, Jena.

Krammer, K. & Lange-Bertalot, H. (1988). Bacillariophyceae 2. Teil: Epithemiaceae, Surirellaceae. In: A. Pascher (Ed.), Süßwasserflora von Mitteleuropa (pp. 1-596). Gustaw Fischer Verlag, Stuttgart-New York.

Krammer, K. & Lange-Bertalot, H. (1991). Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In A. Pascher (Ed.), Süßwasserflora von Mitteleuropa (pp. 1-576). Gustaw Fischer Verlag, Stuttgart-Jena.

Latja, R. & Salonen, K. (1978). Carbon analysis for the determination of individual biomasses of planktonic animals. Verh. Internat. Verein. Theor. Ang. Limnol. 20: 2556-2560.

Laybourn-Parry, J. (1992). Protozoan plankton ecology. Chapman and Hall, London.

Napiórkowska-Krzebietke, A. & Kobos, J. (2016). Assessment of the cell biovolume of phytoplankton widespread in coastal and inland water bodies. Water Res. 104: 532-546.

Napiórkowska-Krzebietke, A., Szostek, A., Szczepkowska, B. & Błocka, B. (2012). Thermal and oxygen conditions in lakes under restoration following the removal of herbivorous and seston-filtering fish. Arch. Pol. Fish. 20: 39-50.

Porter, K.G. & Feig, Y.S. (1980). The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943-948.

Post, D.M., Pace, M.L. & Hairston, N.G. (2000). Ecosystem size determines food-chain length in lakes. Nature 405: 1047-1049.

Putt, M. & Stoecker, D.K. (1989). An experimentally determined carbon: volume ratio for marine ”oligotrichous” ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34: 1097-1103.

Radwan, S., Bielańska-Grajner, I. & Ejsmont-Karabin, J. (2004). Część ogólna, Monogononta – część systematyczna. 32.A. In S. Radwan (Ed.), Wrotki (Rotifera) (pp. 1-146). Fauna słodkowodna Polski. 32. Łódź: Polskie Towarzystwo Hydrobiologiczne, Uniwersytet Łódzki. Oficyna Wydawnicza Tercja.

Rellstab, C. & Spaak, P. (2009). Lake origin determines Daphnia population growth under winter conditions. J. Plankton Res. 31: 261-271. DOI: 10.1093/plankt/fbn120.

Rocha, O. & Duncan, A. (1985). The relationship between cel carbon and cell volume in freshwater algal species used in zooplankton studies. J. Plankton Res. 7: 279-294.

Rybak, J.I. & Błedzki, L.A. (2005). Widłonogi, Copepoda: Cyclopoida, Klucz do oznaczania. Warszawa, Biblioteka Monitoringu Środowiska.

Sanders, R.W. & Wickham, S.A. (1993). Planktonic protozoa and metazoa: predation, food quality and population control. Mar. Microb. Food Webs 7: 197-223.

Sayer, C.D., Davidson, T.A., Rawcliffe, R., Langdon, P.G., Leavitt, P.R. et al. (2016). Consequences of fish kills for long-term trophic structure in shallow lakes: Implications for theory and restoration. Ecosystems 19: 1289-1309. DOI: 10.1007/s10021-016-0005-z.

Standard Methods for Examination of Water & Wastewater (1999). Am. Publ. Health ASN., New York.

Toporowska, M., Pawlik-Skowrońska, B. & Krupa, D. (2010). Winter versus summer blooming of phytoplankton in a shallow lake: effect of hypertrophic conditions. Pol. J. Ecol. 58: 3-12.

Twiss, M.R., McKay, R.M.L., Bourbonniere, R.A., Bullerjahn, G.S., Carrick, H.J. et al. (2012). Diatoms abound in ice-covered Lake Erie: An investigation of o shore winter limnology in Lake Erie over the period 2007 to 2010. J. Great Lakes Res. 38: 18-30.

Utermöhl, H. (1958). Guidance on the quantitative analysis of phytoplankton – Methods. Mitt. Int. Ver. Theor. Angew. Limnol. 9: 1-38. (In German).

Üveges, V., Tapolczai, K., Krienitz, L. & Padisák, J. (2012). Photosynthetic characteristics and physiological plasticity of an Aphanizomenon flos-aquae (Cyanobacteria, Nostocaceae) winter bloom in a deep oligo-mesotrophic lake (Lake Stechlin, Germany). Hydrobiologia 698: 263-272.

Vehmaa, A. & Salonen, K. (2009). Development of phytoplankton in Lake Pääjärvi (Finland) during under-ice convective mixing period. Aquat. Ecol. 43: 693-705.

Ventelä, A.M., Saarikari, V. & Vuorio, K. (1998). Vertical and seasonal distributions of microorganisms, zooplankton and phytoplankton in a eutrophic lake. Hydrobiologia 363: 229-240.

Wojciechowska, W. & Lenard, T. (2014). Effect of extremely severe winter on under-ice phytoplankton development in a mesotrophic lake (Eastern Poland). Oceanol. Hydrobiol. St. 43: 147-153.

Weyhenmeyer, G.A., Blenckner, T. & Pettersson, K. (1999). Changes of the plankton spring outburst related to the north Atlantic oscillation. Limnol. Oceanogr. 44: 1788-1792. DOI: 10.4319/lo.1999.44.7.1788.

Weyhenmeyer, G.A., Livingstone, D.M., Meili, M., Jensen, O., Benson, B. et al. (2011). Large geographical differences in the sensitivity of ice-covered lakes and rivers in the Northern Hemisphere to temperature changes. Global Change Biology 17: 268-275. DOI: 10.1111/j.1365-2486.2010.02249.x.

Yang, Y., Stenger-Kovács, C., Padisák, J. & Pettersson, K. (2016). Effects of winter severity on spring phytoplankton development in a temperate lake (Lake Erken, Sweden). Hydrobiologia 780: 47-57. DOI: 10.1007/s10750-016-2777-8.

Zakęś, Z., Szczepkowski, M., Kapusta, A., Różyński, M., Stawecki, K. et al. (2015). From Aquaculture into the Wild. Developing alternative methods for managing predatory fish in lake Fisheries. IFI Olsztyn, pp. 224. (In Polish with English summary).

Downloads

Published

2017-09-25

How to Cite

Kalinowska, K., Napiórkowska-Krzebietke, A., Bogacka-Kapusta, E., Hutorowicz, J., Pyka, J., Stawecki, K., … Chybowski, Łucjan. (2017). Microbial and classic food web components under ice cover in eutrophic lakes of different morphometry and fisheries management. Oceanological and Hydrobiological Studies, 46(3), 271–282. Retrieved from https://czasopisma.bg.ug.edu.pl/index.php/oandhs/article/view/8752

Issue

Section

Articles

Most read articles by the same author(s)