Baltic Sea Holocene evolution based on OSL and radiocarbon dating: evidence from a sediment core from the Arkona Basin (the southwestern Baltic Sea)

Authors

  • Robert Kostecki Adam Mickiewicz University in Poznan
  • Piotr Moska Silesian University of Technology

Keywords:

southern Baltic Sea, Arkona Basin, OSL, radiocarbon dating, grain size, Holocene, accumulation rate

Abstract

The paper presents the chronology of the Holocene evolution of the Baltic Sea based on the optically stimulated luminescence (OSL) and radiocarbon dating methods applied to a core taken from the Arkona Basin. The dating results were supplemented by grain size and geochemical analysis. The obtained results of OSL and radiocarbon dating enabled the construction of an age-depth model and confirmed the continuous sedimentation since 9900 cal yrs BP. One of the most interesting findings of this study is a clear relationship between the rate of sedimentation and fluctuations in the energy of depositional environment. The analyzed sediment core revealed two sections of different accumulation rates. The bottom section was deposited until 2700 cal yrs BP when the Ancylus Lake and the Littorina Sea were present, characterized by the accumulation rate estimated at around 0.46 mm year-1 and the dynamic sedimentation environment confirmed by grain size parameters. The accumulation rate at the top section deposited during the Post-Littorina Sea stage was estimated at around 1 mm year-1. This stage, characterized by more stable deposition and lower-energy environment conditions, was confirmed by small grain size, symmetric skewness and increasing content of organic matter.

Downloads

Download data is not yet available.

References

Adamiec, G. & Aitken, M.J. (1998). Dose-rate conversion factors: update. Ancient TL 16: 37- 50.

Andrén, E., Andrén, T. & Sohlenius, G. (2000). The Holocene history of the southwestern Baltic Sea as reflected in a sediment core from the Bornholm Basin. Boreas 29: 233-250. DOI:10.1080/030094800424259.

Andren, T., Björck, S., Andren, E., Conley, D., Zillén, L. et al. (2011). The Development of the Baltic Sea Basin During the Last 130 ka. In The Baltic Sea Basin (pp. 75-97). Springer, Berlin Heidelberg.

Bendixen, C., Jensen, J.B., Boldreel, L.O., Clausen, O.R., Bennike, O. et al. (2017). The Holocene Great Belt connection to the southern Kattegat, Scandinavia: Ancylus Lake drainage and Early Littorina Sea transgression. Boreas 46(1): 53-68. DOI: 10.1111/bor.12154.

Bennett, K.D. (1996). Determination of the number of zones in a biostratigraphical sequence. New Phytol. 132: 155-170.

Berger, G.W. (2010). An alternate form of probabilitydistribution plot for De values. Antient TL 28, 11-22.

Blaauw, M. & Christen, J.A. (2011). Flexible paleoclimate agedepth models using an autoregressive gamma process. Bayesian Analysis 6: 457-474.

Blott, S.J. & Pye, K. (2001). GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landforms 26: 1237-1248.

Borówka, R.K., Osadczuk, A., Witkowski, A., Wawrzyniak-Wydrowska, B. & Duda, T. (2005). Late Glacial and Holocene depositional history in the eastern part of the Szczecin Lagoon (Great Lagoon) basin--NW Poland. Quat. Int. 130: 87-96. DOI: 10.1016/j.quaint.2004.04.034.

Bortolot, V.J., (2000). A new modular high capacity OSL reader system. Radiation Measurements 32: 751-757.

Borzenkova, I., Zorita, E., Borisova, O., Kalnina, L., Kisieliene, D. et al. (2015). Second assessment of climate change for the Baltic Sea Basin. In The BACC II Author Team (Eds.), Second Assessment of Climate Change for the Baltic Sea Basin. (pp. 25-49). Springer. DOI: 10.1007/978-3-319-16006-1.

Emelyanov, E.M. & Vaikutiene, G. (2013). Holocene environmental changes during tran sition Ancylus- Litorina stages in the Gdansk Basin, south-eastern Baltic Sea. Baltica 26: 71-82. DOI: 10.5200/baltica.2013.26.08.

Feldens, P. & Schwarzer, K. (2012). The Ancylus Lake stage of the Baltic Sea in Fehmarn Belt: Indications of a new threshold. Cont. Shelf Res. 35: 43-52. DOI: 10.1016/j.csr.2011.12.007.

Fleming, S. (1979). Thermoluminescence techniques in archaeology. Clarendon Press, Oxford.

Folk, R.L. (1966). A review of grain-size parameters. Sedimentology 6: 73-93. DOI: 10.1111/j.1365-3091.1966.tb01572.x.

Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M. (1999). Optical dating of single and multiple grains of quartz from Jinminum Rock Shelter, Northern 12 Australia. Part I, experimental design and statistical models. Archaeometry 41: 1835- 1857.

Grigoriev, A., Zhamoida, V., Spiridonov, M., Sharapova, A., Sivkov, V. et al. (2011). Late-glacial and Holocene palaeoenvironments in the Baltic Sea based on a sedimentary record from the Gdansk Basin. Clim. Res. 48: 13-21. DOI: 10.3354/cr00944.

Grimm, E.C. (1987). CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 13: 13-35. DOI: 10.1016/0098-3004(87)90022-7.

Hughes, A.L.C., Gyllencreutz, R., Lohne, Ø.S., Mangerud, J., Svendsen, J.I. (2015). The last Eurasian ice sheets – a chronological database and time-slice reconstruction, DATED-1. Boreas 45: 1-45. DOI: 10.1111/bor.12142.

Jacobs, Z. (2008). Luminescence chronologies for coastal and marine sediments. Boreas 37: 508-535. DOI: 10.1111/j.1502-3885.2008.00054.x.

Jensen, J.B., Bennike, O., Witkowski, A., Lemke, W. & Kuijpers, A. (1999). Early Holocene history of the southwestern Baltic Sea: the Ancylus Lake stage. Boreas 28: 437-453. DOI: 10.1111/j.1502-3885.1999.tb00233.x.

Juggins, S. (2017). rioja: Analysis of Quaternary Science Data, R package version (0.9-15). (http://cran.r-project.org/package=rioja).

Kortekaas, M. (2007). Post-glacial history of sea-level and environmental change in the southern Baltic Sea. Lund University. Department of Geology, Quaternary Sciences.

Kortekaas, M., Murray, A., Sandgren, P. & Björck, S. (2007). OSL chronology for a sediment core from the southern Baltic Sea: A continuous sedimentation record since deglaciation. Quat. Geochronol. 2: 95-101. DOI: 10.1016/j.quageo.2006.05.036

Kostecki, R. (2014). Stages of the Baltic Sea evolution in the geochemical record and radiocarbon dating of sediment cores from the Arkona Basin. Oceanol. Hydrobiol. St. 43: 237-246. DOI: 10.2478/s13545-014-0138-7.

Kostecki, R. & Janczak-Kostecka, B. (2011). Holocene evolution of the Pomeranian Bay environment, southern Baltic Sea. Oceanologia 53: 471-487.

Kostecki, R. & Janczak-Kostecka, B. (2012). Holocene environmental changes in the south-western Baltic Sea reflected by the geochemical data and diatoms of the sediment cores. J. Mar. Syst. 105-108: 106-114. DOI: 10.1016/j.jmarsys.2012.06.005.

Kostecki, R., Janczak-Kostecka, B., Endler, M. & Moros, M. (2015). The evolution of the Mecklenburg Bay environment in the Holocene in the light of multidisciplinary investigations of the sediment cores. Quat. Int. 386: 226-238. DOI: 10.1016/j.quaint.2015.07.007.

Lemke, W., Jensen, J.B., Bennike, O., Endler, R., Witkowski, A. et al. (2001). Hydrographic thresholds in the western Baltic Sea: Late Quaternary geology and the Dana River concept. Mar. Geol. 176: 191-201.

Lougheed, B.C., Filipsson, H.L. & Snowball, I. (2013). Large spatial variations in coastal 14C reservoir age – a case study from the Baltic Sea. Clim. Past 9: 1015-1028. DOI: 10.5194/cp-9-1015-2013.

Mejdahl, V. (1979). Thermoluminescence dating: beta-dose attenuation in quartz grains. Archaeometry 21, 1, pp. 61-72.

Moros, M., Lemke, W., Kuijpers, A., Endler, R., Jensen, J.B. et al. (2002). Regressions and transgressions of the Baltic basin reflected by a new high-resolution deglacial and postglacial lithostratigraphy for Arkona Basin sediments (western Baltic Sea). Boreas 31: 151-162. DOI: 10.1080/030094802320129953.

Murray, A.S. & Wintle, A.G. (2000). Luminescence dating of quartz using an improved singlealiquot regenerativedose protocol. Radiation Measurements 32: 57-73.

Murray, A.S. & Olley, J.M. (2002). Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review. Geochronometria 21: 1-16.

Prescott, J.R. & Stephan, L.G. (1982). The contribution of cosmic radiation to the environmental dose for thermoluminescence dating. Latitude, altitude and depth dependencies. TLS II-1, pp. 16-25.

Racinowski, R., Szczypek, T. & Wach, J. (2001). Prezentacja i interpretacja wyników badan uziarnienia osadów czwartorzędowych [Presentation and interpretation of the results of grain-size analysis]. Silesian University, Katowice.

Rees-Jones, J. (1995). Optical dating of young sediments using fine-grain quartz. Ancient TL. 13: 9-14.

Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G. et al. (2013). Intcal13 and marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55: 1869-1887.

Rößler, D., Moros, M. & Lemke, W. (2011). The Littorina transgression in the southwestern Baltic Sea: new insights based on proxy methods and radiocarbon dating of sediment cores. Boreas 40: 231-241. DOI: 10.1111/j.1502-3885.2010.00180.x.

Stuiver, M. & Reimer, P.J. (1993). Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35: 215-230.

Szmytkiewicz, A. & Zalewska, T. (2014). Sediment deposition and accumulation rates determined by sediment trap and 210Pb isotope methods in the outer puck bay (Baltic Sea). Oceanologia 56: 85-106. DOI: 10.5697/oc.56-1.085.

Winn, K. & Averdieck, F.-R. (1984). Post-Boreal development of the Western Baltic: comparison of two local sediment basins. Meyniana 36: 35-50.

Witkowski, A., Broszinski, A., Bennike, O., Janczak-Kostecka, B., Bo Jensen, J. et al. (2005). Darss Sill as a biological border in the fossil record of the Baltic Sea: evidence from diatoms. Quat. Int. 130: 97-109. DOI: 10.1016/j.quaint.2004.04.035.

Zhang, J., Tsukamoto, S., Grube, A. & Frechen, M. (2014). OSL and 14 C chronologies of a Holocene sedimentary record (Garding-2 core) from the German North Sea coast. Boreas 43: 856-868. DOI: 10.1111/bor.12071.

Downloads

Published

2017-09-25

How to Cite

Kostecki, R., & Moska, P. (2017). Baltic Sea Holocene evolution based on OSL and radiocarbon dating: evidence from a sediment core from the Arkona Basin (the southwestern Baltic Sea). Oceanological and Hydrobiological Studies, 46(3), 294–306. Retrieved from https://czasopisma.bg.ug.edu.pl/index.php/oandhs/article/view/8754

Issue

Section

Articles