Analysis of zooplankton assemblages from man-made ditches in relation to current velocity
Keywords:
stream ecology, Rotifera, Copepoda, Cladocera, biodiversity, land reclamationAbstract
Because of the slow current velocity, man-made ditches may create distinct physical and ecological conditions that are suitable for the growth of zooplankton populations. However, the influence of drainage ditches on zooplankton communities has not been studied yet. This study aims to answer the following questions: i) Are man-made ditches a rich source of zooplankton? ii) What current velocity value leads to abundant zooplankton in man-made ditches? iii) Do zooplankton communities differ between man-made ditches and connected natural streams? In man-made drainage ditches with a water current lower than 0.1 m s-1, the abundance of zooplankton was greater than in the majority of streams. Sometimes this level of abundance was equivalent to the densities of zooplankton in lakes or dammed reservoirs. The presence of zooplankton in man-made ditches may be of great importance to the establishment of food webs, particularly during periods of high water levels or heavy rainfall, both of which may accelerate the water current, causing the dispersion of zooplankton along the ditches and into natural streams.
Downloads
References
Allan, J.D. (2004). Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu. Rev. Ecol. Syst. 35: 257-284. DOI: 10.1146/annurev.ecolsys.35.120202.300000.
Basu, B.K. & Pick F.R. (1997) Phytoplankton and zooplankton development in a lowland, temperate river. J. Plankton Res. 19: 237-253.
Bednarek, A., Szklarek, S. & Zalewski, M. (2014). Nitrogen pollution removal from areas of intensive farming - comparison of various denitrification biotechnologies. Ecohydrol. Hydrobiol. 14: 132-141. DOI: 10.1016/j.ecohyd.2014.01.005.
Błędzki, L.A. (2007). Method for comparing species richness and species diversity. Part I. Bioskop. 1: 18-22. (In Polish).
Boothby, J. (2003) Tackling degradation of a seminatural landscape: options and evaluations. Land Degrad. Dev. 14: 227-243. DOI: 10.1002/ldr.551.
Campbell, C.E. (2002). Rainfall events and downstream drift of microcrustacean zooplankton in a Newfoundland boreal stream. Can. J. Zool. 80: 997-100. DOI: 10.1139/z02-077.
Chang, K.H., Doi, H., Imai, H. Gunji, F. & Nakano, S.I. (2008). Longitudinal changes in zooplankton distribution below a reservoir outfall with reference to river planktivory. Limnology 9: 125-133. DOI: org/10.1007/s10201-008-0244-6.
Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H. et al. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84: 45-67.
Colwell, R.K. (2013). EstimateS, Version 9.1: Statistical Estimation of Species Richness and Shared Species from Samples. Consultado en: http://viceroy. eeb. uconn. edu/estimates.
Czerniawski, R. (2012). Spatial pattern of potamozooplankton community of the slowly flowing fishless stream in relations to abiotic and biotic factors. Pol. J. Ecol. 60: 323-338.
Czerniawski, R. (2013). Zooplankton community changes between forest and meadow sections in small headwater streams, NW Poland. Biologia 68: 448-458. DOI: 10.2478/s11756-013-0170-x.
Czerniawski, R. & Domagała, J. (2010). Zooplankton communities of two lake outlets in relation to abiotic factors. Cent. Eur. J. Biol. 5: 240-255. DOI: 10.2478/s11535-009-0062-9.
Czerniawski, R. & Domagała, J. (2013). Reduction of zooplankton communities in small lake outlets in relations to abiotic and biotic factors. Oceanol. Hydrobiol. St. 42: 123-131. DOI: 10.2478/s13545-013-0065-z.
Czerniawski, R. & Domagała, J. (2014). Small dams profoundly alter the spatial and temporal composition of zooplankton communities in running waters. Int. Rev. Hydrobiol. 99: 300-311. DOI: 10.1002/iroh.201301674.
Czerniawski, R. & Pilecka-Rapacz, M. (2011). Summer zooplankton in small rivers in relation to selected conditions. Cent. Eur. J. Biol. 6: 659-674. DOI: 10.2478/s11535-011-0024-x.
Czerniawski, R., Pilecka-Rapacz, M. & Domagała, J. (2013). Zooplankton communities of inter-connected sections of lower River Oder (NW Poland). Cent. Eur. J. Biol. 8: 18-29. DOI: 10.2478/s11535-012-0110-8.
De Bie, T., Declerck, S., Martens, K., De Meeste, L. & Brendonck, L. (2008). A comparative analysis of cladoceran communities from different water body types: patterns in community composition and diversity. Hydrobiologia 597: 19-27. DOI: 10.1007/s10750-007-9222-y.
Declerck, S., De Bie, T., Ercken, D., Hampel, H., Schrijvers, S. et al. (2006). Ecological characteristics of small farmland ponds: associations with land use practices at multiple spatial scales. Biol. Conserv. 131: 523-532.
Dussart, B. & Defaye, D. (2006). World Directory of Crustacea Copepoda of Inland Waters. II Cyclopiformes. Leiden: Backhuys Publishers.
Ejsmont-Karabin, J., Węgleńska, T. & Wiśniewski, R.J. (1993). The effect of water flow rate on zooplankton and its role in phosphorus cycling in small impoundments. Water Sci. Technol. 28: 35-43.
Ejsmont-Karabin, J. & Kruk, M. (1998). Effects of contrasting land use on free-swimming rotifer communities of streams in Masurian Lake District, Poland. Hydrobiologia 387/388: 241-249.
Holst, H., Zimmermann-Timm, H. & Kausch, H. (2002). Longitudinal and transverse distribution of plankton rotifers in the potamal of the River Elbe (Germany) during late summer. Int. Rev. Hydrobiol. 87: 267-280. DOI: 10.1002/1522-2632(200205)87:2/3<267::AIDIROH267>3.0.CO;2-F.
Gołdyn, R. & Kowalczewska-Madura, K. (2008). Interactions between phytoplankton and zooplankton in the hypertrophic Swarzędzkie Lake in western Poland. J. Plankton Res. 30: 33-42. DOI: 10.1093/plankt/fbm086.
Grabowska, M., Ejsmont-Karabin, J. & Karpowicz, M. (2013). Reservoir-river relationships in lowland, shallow, eutrophic systems: an impact of zooplankton from hypertrophic reservoir on river zooplankton. Pol. J. Ecol. 61: 759-768.
Hunke, P., Mueller, E.N., Schröder, B. & Zeilhofer, P. (2015). The Brazilian Cerrado: assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology DOI: 10.1002/eco.1573.
Jack, J.D. & Thorp, J.H. (2002). Impacts of fish predation on an Ohio River zooplankton community. J. Plankton Res. 24: 119-127. DOI: 10.1093/plankt/24.2.119.
Jeppesen, E., Nõges, P., Davidson, T.A., Haberman, J., Nõges, T. et al. (2011). Zooplankton as indicators in lakes: a scientificbased plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676: 279-297. DOI: 10.1007/s10750-011-0831-0.
Kamarainen, A.M., Rowland, F.E., Biggs, R. & Carpenter, S.R. (2008). Zooplankton and the total phosphoruschlorophyll a relationship: hierarchical Bayesian analysis of measurement error. Can. J. Fish. Aquat. Sci. 65: 2644-2655. DOI:10.1139/F08-161.
Karpowicz, M. (2014). Influence of eutrophic lowland reservoir on crustacean zooplankton assemblages in river valley oxbow lakes. Pol. J. Environ. St. 23: 2055-2061.
Kiryluk, A. (2010). Species diversity of the flora in melioration ditches in dry-ground forest and post-bog meadow habitats. Teka Kom. Ochr. Kształt. Srod. Przyr. 7: 130-137.
Kirulyk, A. (2013). Influence of maintenance work on the plant of species in meliorated ditches on the post-bog meadows object. Eng. Environ. Sci. 62: 374-381.
Krylov, A.V. (2002). Activity of beavers as an ecological factor affecting the zooplankton of small rivers. Rus. J. Ecol. 33: 349-356.
Krylov, A.V. (2008). Impact of the activities of beaver on the zooplankton of a piedmont river (Mongolia). Inland Wat. Biol. 1: 73-75.
Lair, N. (2006). A review of regulation mechanisms of metazoan plankton in riverine ecosystems: aquatic habitat versus biota. River Res. Appl. 22: 567-593. DOI: 10.1002/rra.923.
Lemly, A.D., Finger, S.E. & Nelson, M.K. (1993). Sources and impacts of irrigation drainwater contaminants in arid wetlands. Environ. Toxicol. Chem. 12: 2265-2279.
Lévesque, S., Beisner, B.E. & Peres-Neto, P.R. (2010). Meso-scale distributions of lake zooplankton reveal spatially and temporally varying trophic cascades. J. Plankton Res. 32: 1369-1384. DOI: 10.1093/plankt/fbq064.
Mauritzen, M., Bergers, P.J.M., Andreassen, H.P., Bussink, H. & Barendse, R. (1999). Root vole movement patterns: do ditches function as habitat corridors? J. Appl. Ecol. 36: 409-421.
Nielsen, D.L., Podnar, K., Watts, R.J. & Wilson, A.L. (2013). Empirical evidence linking increased hydrologic stability with decreased biotic diversity within wetlands. Hydrobiologia 708: 81-96. DOI: 10.1007/s10750-011-0989-5.
Nogrady, T., Wallace, R.L. & Snell, T.W. (1993). Rotifera. In H.J. Dumont (Ed.), Biology, Ecology and Systematics. Vol. 1, Guides to the Identification of the Microinvertebrates of the Continental Waters of the World (pp. 1-142). The Hague: SPB Academic Publishers.
Obolewski, K. (2011). Macrozoobenthos patterns along environmental gradients and hydrological connectivity of oxbow lakes. Ecol. Eng. 37: 796-805. DOI: 10.1016/j.ecoleng.2010.06.037.
Oksanen, J. (2009). Multivariate analysis of ecological communities in R: vegan tutorial. Available from: http://cc.oulu.fi/~jarioksa/ opetus/metodi/vegantutor.pdf, pp. 42.
Radwan, S. (2004). Rotifers. Łódz: Uniwersytet Łódzki. (In Polish).
Reynolds, C.S. (2000). Hydroecology of river plankton: the role of variability in channel flow. Hydrol. Process. 14: 3119-3132.
Richardson, W.B. (1992). Microcrustacea in flowing water: experimental analysis of washout times and a field test. Freshwat. Biol. 28: 217-230.
Robertson, A.L. (2000). Lotic meiofaunal community dynamics: colonisation, resilience and persistence in a spatially and temporally heterogeneous environment. Freshwat. Biol. 44: 135-147. DOI: 10.1046/j.1365-2761.2000.00595.x.
Rybak, J.I. & Błędzki, L.A. (2010). Planktonic crustaceans of freshwaters. Warszawa: Wydawnictwo Uniwersytetu Warszawskiego. (In Polish).
Rzoska, J. (1976). Zooplankton of the Nile system. In J. Rzoska (Ed.), The Nile, biology of an ancient river (pp. 333-343). The Hague: Junk.
Simon, T.N. & Travis, J. (2011) The contribution of man-made ditches to the regional stream biodiversity of the new river watershed in the Florida panhandle. Hydrobiologia 661: 163-177. DOI: 10.1007/s10750-010-0521-3.
Sługocki, Ł., Czerniawski, R., Domagała, J., Krepski, T. & Pilecka-Rapacz, M. (2012) Zooplankton of three suburban lakes in relation to select abiotic conditions. Ann. Set. Environ. Protect. 14: 146-160.
Thorp, J.H., Thoms, M.C. & Delong, M.D. (2006). The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Res. Appl. 22: 123-147. DOI: 10.1002/rra.901.
Urban, D. & Grzywna, A. (2006). Water quality and plant diversity in flows on meliorated area. Pol. J. Environ. St. 15: 488-492.
Vranovsky, M. (1995) The effect of current velocity upon the biomass of zooplankton in the River Danube side arms. Biologia 50: 461-464.
Walks, D.J. & Cyr, H. (2004). Movement of plankton through lake stream systems. Freshwat. Biol. 49: 745-759. DOI: 10.1111/j.1365-2427.2004.01220.x.
Williams, P., Whitfield, M., Biggs, J., Bray, S,. Fox, G. et al. (2004). Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv. 115: 329-341. DOI: 10.1016/S0006-3207(03)00153-8.
Zalewski, M. (2010). Ecohydrology for implementation of the EUwater framework directive. Wat. Manag. 164: 375-385. DOI: 10.1680/wama.1000030.
Zalewski, M. (2014). Ecohydrology and Hydrologic Engineering: Regulation of Hydrology-Biota Interactions for Sustainability. J. Hydrol. Eng. 20(Special Issue: Grand Challenges of Hydrology): A4014012.
Zhou, S., Tang, T., Wu, N., Fu, X. & Cai, Q. (2008). Impacts of a small dam on riverine zooplankton. Inter. Rev. Hydrobiol. 93: 297-311. DOI: 10.1002/iroh.200711038.