Complicated family relationships, or about taxonomic problems in the family Pyrenomonadaceae (Cryptophyceae)

Autor

  • Magdalena Solarska Polish Academy of Sciences
  • Michał Adamski Polish Academy of Sciences
  • Jolanta Piątek Polish Academy of Sciences

DOI:

https://doi.org/10.26881/oahs-2023.3.04

Słowa kluczowe:

Algae, cryptophytes, Pyrenomonadaceae, Rhodomonas, Rhinomonas, Storeatula, taxonomy, dimorphism

Abstrakt

Cryptophytes, to which the Pyrenomonadaceae family belongs, are interesting organisms that occur almost all over the world and they are an important element of trophic chains in many ecosystems. The development of research methods and techniques, including electron microscopy and molecular studies, allowed for a better understanding of taxonomic relationships in this group of organisms. The Pyrenomonadaceae family currently includes three genera: Rhodomonas, Rhinomonas, and Storeatula, but their validity is being debated in the light of the latest data. The state of knowledge and the problems faced in the taxonomic revision of this family of cryptophytes are summarized in this article.

Downloads

Download data is not yet available.

Bibliografia

Altenburger, A., Blossom, H. E., Garcia-Cuetos, L., Jakobsen, H. H., Carstensen, J., Lundholm, N., Hansen, P. J., Moestrup, Ø., & Haraguchi, L. (2020). Dimorphism in cryptophytes-The case of Teleaulax amphioxeia/Plagioselmis prolonga and its ecological implications. Science Advances, 6(37), 1–9. https://doi.org/10.1126/sciadv.abb1611 PMID:32917704.

Borics, G., Tóthmérész, B., Grigorszky, I., Padisák, J., Várbíró, G., & Szabó, S. (2003). Algal assemblage types of bog-lakes in Hungary and their relation to water chemistry, hydrological conditions and habitat diversity. Hydrobiologia, 502(1–3), 145–155. https://doi.org/10.1023/B:HYDR.0000004277.07316.c8.

Brown, M. R., Jeffrey, S. W., Volkman, J. K., & Dunstan, G. A. (1997). Nutritional properties of microalgae for mariculture. Aquaculture (Amsterdam, Netherlands), 151(1–4), 315–331. https://doi.org/http://dx.doi.org/10.1016/S0044-8486(96)01501-3 https://doi.org/10.1016/S0044-8486(96)01501-3.

Butcher, R. W. (1967). An introductory account of the smaller algae of British coastal waters. Part IV: Cryptophyceae. (Fishery In). Ministry of Agriculture, Fisheries and Food, HMSO.

Clay, B. L. (2015). Cryptomonads. In J.D. Wehr, R.G. Sheath & J.P. Kociolek (Eds.) Freshwater Algae of North America: Ecology and Classification (pp. 809-850). Elsevier Inc., https://doi.org/10.1016/B978-0-12-385876-4.00018-9.

Clay, B. L., Kugrens, P., & Lee, R. E. (1999). A revised classification of Cryptophyta. Botanical Journal of the Linnean Society, 131(2), 131–151. https://doi. org/10.1111/j.1095-8339.1999.tb01845.x.

Curtis, B. A., Tanifuji, G., Burki, F., Gruber, A., Irimia, M., Maruyama, S., Arias, M. C., Ball, S. G., Gile, G. H., Hirakawa, Y., Hopkins, J. F., Kuo, A., Rensing, S. A., Schmutz, J., Symeonidi, A., Elias, M., Eveleigh, R. J., Herman, E. K., Klute, M. J., . . . Archibald, J. M. (2012). Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature, 492(7427), 59–65. https://doi.org/10.1038/nature11681 PMID:23201678.

Dayrat, B. (2005). Towards integrative taxonomy. Biological Journal of the Linnean Society. Linnean Society of London, 85(3), 407–415. https://doi.org/10.1111/j.1095- 8312.2005.00503.x.

Deane, J. A., Strachan, I. M., Saunders, G. W., Hill, D. R. A., & McFadden, G. I. (2002). Cryptomonad evolution: Nuclear 18S rDNA phylogeny versus cell morphology and pigmentation. Journal of Phycology, 38(6), 1236–1244. https://doi.org/10.1046/j.1529-8817.2002.01250.x.

Douglas, S., Zauner, S., Fraunholz, M., Beaton, M., Penny, S., Deng, L. T., Wu, X., Reith, M., Cavalier-Smith, T., & Maier, U. G. (2001). The highly reduced genome of an enslaved algal nucleus. Nature, 410(6832), 1091–1096. https://doi.org/10.1038/35074092 PMID:11323671.

Ehrenberg, C. G. (1831). Über die Entwicklung und Lebensdauer der Infusionsthiere: nebst ferneren Beiträgen zu einer Vergleichung ihrer organischen Systeme. In Abh. Konig.- Preuss. (Vol. 1832). Abh. Konig.-Preuss. Akad. Wissens. Glazer, A. N., & Wedemayer, G. J. (1995). Cryptomonad biliproteins - an evolutionary perspective. Photosynthesis Research, 46 (1-2), 93–105. https://doi.org/10.1007/BF00020420 PMID:24301572.

Guiry, M. D., & Guiry, G. M. (2022). AlgaeBase. World-Wide Electronic Publication. National University of Ireland. Hill, D. R. A., & Rowan, K. S. (1989). The biliproteins of the Cryptophyceae. Phycologia, 28(4), 455–463. https://doi.org/10.2216/i0031-8884-28-4-455.1.

Hill, D. R. A., & Wetherbee, R. (1986). Proteomonas sulcata gen. et sp. nov. (Cryptophyceae), a cryptomonad with two morphologically distinct and alternating forms. Phycologia, 25(4), 521–543. https://doi.org/10.2216/i0031-8884-25-4-521.1.

Hill, D. R. A., & Wetherbee, R. (1989). A reappraisal of the genus Rhodomonas (Cryptophyceae). Phycologia, 28(2), 143–158. https://doi.org/10.2216/i0031-8884-28-2-143.1.

Hoef-Emden, K. (2007). Revision of the genus Cryptomonas (Cryptophyceae) II: Incongruences between the classical morphospecies concept and molecular phylogeny in smaller pyrenoid-less cells. Phycologia, 46(4), 402–428. https://doi.org/10.2216/06-83.1.

Hoef-Emden, K. (2008). Molecular phylogeny of phycocyanincontaining cryptophytes: Evolution of biliproteins and geographical distribution. Journal of Phycology, 44(4), 985– 993. https://doi.org/10.1111/j.1529-8817.2008.00530.x PMID:27041617.

Hoef-Emden, K. (2018). Revision of the genus Chroomonas Hansgirg: The benefits of DNA-containing specimens. Protist, 169(5), 662–681. https://doi.org/10.1016/j. protis.2018.04.005 PMID:30125802.

Hoef-Emden, K., & Archibald, J. M. (2017). Cryptophyta (Cryptomonads). In J. M. Archibald, A. G. B. Simpson, C. H. Slamovits, L. Margulis, M. Melkonian, D. J. Chapman, & J. O. Corliss (Eds.), Handbook of the Protists (2nd ed., pp. 851–891). Springer International Publishing., https://doi.org/10.1007/978-3-319-28149-0_35.

Hoef-Emden, K., Marin, B., & Melkonian, M. (2002). Nuclear and nucleomorph SSU rDNA phylogeny in the Cryptophyta and the evolution of cryptophyte diversity. Journal of Molecular Evolution, 55(2), 161–179. https://doi.org/10.1007/s00239-002-2313-5 PMID:12107593.

Hoef-Emden, K., & Melkonian, M. (2003). Revision of the genus Cryptomonas (Cryptophyceae): A combination of molecular phylogeny and morphology provides insights into a long-hidden dimorphism. Protist, 154(3-4), 371–409. http://www.sciencedirect.com/science/article/pii/S1434461004701480 https://doi.org/10.1078/143446103322454130 PMID:14658496.

Javornický, P., & Hindák, F. (1970). Cryptomonas frigoris spec. nova (Cryptophyceae), the new cyst-forming flagellate from the snow of the High Tatras. Biologia, 25(4), 241–250. PMID:5419407.

Karsten, G. (1898). Rhodomonas baltica, n.g. et sp. Wissenschaftliche Meeresuntersuchungen, Abteilung Kiel. Neue Folge, 3, 15–16.

Khanaychenko, A. N., Popova, O. V., Rylkova, O. A., Aleoshin, V. V., Aganesova, L. O., & Saburova, M. (2022). Rhodomonas storeatuloformis sp. nov. (Cryptophyceae, Pyrenomonadaceae), a new cryptomonad from the Black Sea: Morphology versus molecular phylogeny. Fottea, 22(1), 122–136. https://doi.org/10.5507/fot.2021.019.

Klaveness, D. (1988). Ecology of the Cryptomonadida: a first review. In C. D. Sandgren (Ed.), Growth and reproductive strategies of freshwater phytoplankton (pp. 105–133). Cambridge Uniersity Press.

Koski, M., Klein Breteler, W., & Schogt, N. (1998). Effect of food quality on rate of growth and development of the pelagic copepod Pseudocalanus elongatus (Copepoda, Calanoida). Marine Ecology Progress Series, 170, 169–187. https://doi.org/10.3354/meps170169.

Kugrens, P., Clay, B. L., & Lee, R. E. (1999). Ultrastructure and systematics of two new freshwater red cryptomonads, Storeatula rhinosa, sp. nov. and Pyrenomonas ovalis, sp. nov. Journal of Phycology, 35(5), 1079–1089. https://doi.org/10.1046/j.1529-8817.1999.3551079.x.

Lane, C. E., & Archibald, J. M. (2008). New marine members of the genus Hemiselmis (Cryptomonadales, Cryptophyceae). Journal of Phycology, 44(2), 439–450. https://doi. org/10.1111/j.1529-8817.2008.00486.x PMID:27041199.

Lane, C. E., Khan, H., MacKinnon, M., Fong, A., Theophilou, S., Archibald, J. M., & the SMBE Tri-National Young Investigators. (2006). Proceedings of the SMBE Tri-National Young Investigators’ Workshop 2005. Insight into the diversity and evolution of the cryptomonad nucleomorph genome. Molecular Biology and Evolution, 23(5), 856–865. https://doi.org/10.1093/molbev/msj066 PMID:16306383.

Lepistö, L., & Holopainen, A.-L. (2003). Occurrence of Cryptophyceae and katablepharids in boreal lakes. Hydrobiologia, 502(1–3), 307–314. https://doi.org/10.1023/ B:HYDR.0000004288.74485.52.

Łukaszek, M. (2017). Historyczne dane o kryptofitach (Cryptophyceae) z Polski i jak je interpretować w świetle najnowszych badań. Fragmenta Floristica et Geobotanica Polonica, 24(2), 329–338.

Maddison, W. P., & Maddison, D. R. (2023). Mesquite: a modular system for evolutionary analysis. Version 3.80 http://www.mesquiteproject.org.

Majaneva, M., Remonen, I., Rintala, J.-M., Belevich, I., Kremp, A., Setälä, O., Jokitalo, E., & Blomster, J. (2014). Rhinomonas nottbecki n. sp. (cryptomonadales) and molecular phylogeny of the family Pyrenomonadaceae. The Journal of Eukaryotic Microbiology, 61(5), 480–492. https://doi.org/10.1111/jeu.12128 PMID:24913840.

Majaneva, M., Remonen, I., Rintala, J.-M., Belevich, I., Kremp, A., Setälä, O., Jokitalo, E., & Blomster, J. (2016). Corrigendum. The Journal of Eukaryotic Microbiology, 63 (2), 275–275. https://doi.org/10.1111/jeu.12302 PMID:26934460.

Marin, B., Klingberg, M., & Melkonian, M. (1998). Phylogenetic relationships among the Cryptophyta: Analyses of nuclearencoded SSU rRNA sequences support the monophyly of extant plastid-containing lineages. Protist, 149(3), 265–276. https://doi.org/http://dx.doi.org/10.1016/S1434-4610(98)70033-1 https://doi.org/10.1016/S1434- 4610(98)70033-1 PMID:23194638.

McFadden, G. I. (2017). The cryptomonad nucleomorph. Protoplasma, 254(5), 1903–1907. https://doi.org/10.1007/s00709-017-1153-5 PMID:28828570.

Morrall, S., & Greenwood, A. D. (1980). A comparison of the periodic substructure of the trichocysts of the Cryptophyceae and Prasinophyceae. Bio Systems, 12(1-2), 71–83. https://doi.org/10.1016/0303-2647(80)90039-8 PMID:6155157.

Nogueira, N., Sumares, B., Nascimento, F. A., Png-Gonzalez, L., & Afonso, A. (2021). Effects of mixed diets on the reproductive success and population growth of cultured Acartia grani (Calanoida). Journal of Applied Aquaculture, 33(1), 1–14. https://doi.org/10.1080/10454438.2019.1602 096.

Novarino, G. (1991). Observations on Rhinomonas reticulata comb. nov. and R. reticulata var. eleniana var. nov. (Cryptophyceae), with comments on the genera Pyrenomonas and Rhodomonas. Nordic Journal of Botany, 11(2), 243–252. https://doi.org/10.1111/j.1756-1051.1991. tb01826.x.

Novarino, G. (2003). A companion to the identification of cryptomonad flagellates (Cryptophyceae = Cryptomonadea). Hydrobiologia, 502(1–3), 225–270. https://doi.org/10.1023/B:HYDR.0000004284.12535.25.

Novarino, G. (2012). Cryptomonad taxonomy in the 21st century: the first two hundred years. In K. Wołowski, I. Kaczmarska, J. M. Ehrman, & A. Z. Wojtal (Eds.), Current advances in algal taxonomy and its applications: phylogenetic, ecological and applied perspective (pp. 19–52). W. Szafer Institute of Botany, Polish Academy of Sciences.

Novarino, G., & Lucas, I. (1993). Some proposals for a new classification system of the Cryptophyceae. Botanical Journal of the Linnean Society, 111(1), 3–21. https://doi. org/10.1111/j.1095-8339.1993.tb01886.x.

Oostlander, P. C., van Houcke, J., Wijffels, R. H., & Barbosa, M. J. (2020). Optimization of Rhodomonas sp. under continuous cultivation for industrial applications in aquaculture. Algal Research, 47, 101889. Advance online publication. https://doi.org/10.1016/j.algal.2020.101889.

Pascher, A. (1913). Cryptomonadinae. In Die Süsswasserflora Deutschlands, Österreichs und der Schweiz (pp. 99–114). Gustav Fischer.

Peltomaa, E., Johnson, M. D., & Taipale, S. J. (2018). Marine cryptophytes are great sources of EPA and DHA. Marine Drugs, 16(1), 1–11. https://doi.org/10.3390/md16010003 PMID:29278384.

Pringsheim, E. G. (1944). Some aspects of taxonomy in the Cryptophyceae. The New Phytologist, 43(2), 143–150. https://doi.org/10.1111/j.1469-8137.1944.tb05009.x.

Pringsheim, E. G. (1968). Zur kenntnis der Cryptomonaden des Süsswassers. Nova Hedwigia, 16 (1-2), 367–401. Santore, U. J. (1984). Some aspects of taxonomy in the Cryptophyceae. The New Phytologist, 98 (4), 627–646. https://doi.org/10.1111/j.1469-8137.1984.tb04153.x.

Seixas, P., Coutinho, P., Ferreira, M., & Otero, A. (2009). Nutritional value of the cryptophyte Rhodomonas lens for Artemia sp. Journal of Experimental Marine Biology and Ecology, 381(1), 1–9. https://doi.org/10.1016/j.jembe.2009.09.007.

Shalchian-Tabrizi, K., Bråte, J., Logares, R., Klaveness, D., Berney, C., & Jakobsen, K. S. (2008). Diversification of unicellular eukaryotes: Cryptomonad colonizations of marine and fresh waters inferred from revised 18S rRNA phylogeny. Environmental Microbiology, 10(10), 2635– 2644. https://doi.org/10.1111/j.1462-2920.2008.01685.x PMID:18643928.

Sheng, J., Malkiel, E., Katz, J., Adolf, J. E., & Place, A. R. (2010). A dinoflagellate exploits toxins to immobilize prey prior to ingestion. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 2082–2087. https://doi.org/10.1073/pnas.0912254107 PMID:20133853.

Tanifuji, G., & Archibald, J. M. (2014). Nucleomorph comparative genomics. In W. Löffelhardt (Ed.), Endosymbiosis (pp. 197–213). Springer Vienna., https://doi.org/10.1007/978-3-7091-1303-5_11.

Tremblay, R., Cartier, S., Miner, P., Pernet, F., Quéré, C., Moal, J., Muzellec, M. L., Mazuret, M., & Samain, J. F. (2007). Effect of Rhodomonas salina addition to a standard hatchery diet during the early ontogeny of the scallop Pecten maximus. Aquaculture (Amsterdam, Netherlands), 262(2–4), 410–418. https://doi.org/10.1016/j.aquaculture.2006.10.009.

van den Hoff, J., Bell, E., & Whittock, L. (2020). Dimorphism in the Antarctic cryptophyte Geminigera cryophila (Cryptophyceae). Journal of Phycology, 56(4), 1028–1038. https://doi.org/10.1111/jpy.13004 PMID:32289881.

Yih, W., Kim, H. S., Jeong, H. J., Myung, G., & Kim, Y. G. (2004). Ingestion of cryptophyte cells by the marine photosynthetic ciliate Mesodinium rubrum. Aquatic Microbial Ecology, 36(2), 165–170. https://doi.org/10.3354/ame036165.

Zauner, S., Heimerl, T., Moog, D., & Maier, U. G. (2019). The known, the new, and a possible surprise: A re-evaluation of the nucleomorph-encoded proteome of cryptophytes. Genome Biology and Evolution, 11(6), 1618–1629. https://doi.org/10.1093/gbe/evz109 PMID:31124562.

Opublikowane

2023-09-29

Jak cytować

Solarska, M., Adamski, M., & Piątek, J. (2023). Complicated family relationships, or about taxonomic problems in the family Pyrenomonadaceae (Cryptophyceae). Oceanological and Hydrobiological Studies, 52(3), 299–306. https://doi.org/10.26881/oahs-2023.3.04

Numer

Dział

Artykuły