Control mechanisms on the reactive silicate fluxes by using on board resuspension experiments in the eutrophicated coastal environment

Autor

  • Ebru Y. Özkan İzmir Katip Çelebi University
  • Hasan B. Buyukisik Ege University

DOI:

https://doi.org/10.26881/oahs-2023.3.08

Słowa kluczowe:

Resuspension, Reactive silica flux, Carbonate precipitation, Sediment, Biogenic silica, Organic carbon

Abstrakt

This study aims to differentiate bio-mediated and biogenic CO3 -2 precipitation or terrestrial CO3 -2 input using onboard incubation techniques, to investigate the effects of resuspension in the coastal environment and to increase our understanding of predicted relationships between silicate releases and other biogeochemical variables in resuspension events. Relationships between dark silicate flux and BSi, CO3 -2, OrgC, Mn (manganese) according to the seasons were examined. The silica flux is controlled by the CaCO3 coating on the diatom skeletons due to the fact that diatom skeletons act as crystallization nuclei in the calcite precipitation that is biologically affected. The reduction in flux with BSi may be due to the reduction in the surface areas of larger diatom species. The negative linear relationships observed between silica fluxes and CO3 -2 is indicative of RSi fluxes constrained by bio-mediated carbonate increase. Linear relationships which are the same in their slopes but differ in their intercepts, reveal the effect of the change in diatom size on silica flux. Smaller diatoms have more surface area per unit volume, meaning an increased silica flux. On the other hand, seeing different CO3 -2 values at stations with the same orgC value have increased the confidence interval (CI) 95% in the linear relationship. The presence of different silica flux values in stations with the same carbonate value may be explained both by different orgC values and by diatoms containing different group sizes. The silica flux is controlled by the CaCO3 coating on the diatom skeletons due to the fact that diatom skeletons act as crystallization nuclei in the calcite precipitation that is biologically affected. The main mechanism controlling the reactive silica flux is carbonate precipitation. The observation of different silica flux values in stations with the same carbonate values can also be explained by OrgC.

Downloads

Download data is not yet available.

Bibliografia

Agusti, S., Duarte, C. M., & Kalff, J. (1987). Algal cell size and the maximum density and biomass of phytoplankton. Limnology and Oceanography, 32(4), 983–986. https://aslopubs.onlinelibrary.wiley.com/doi/ pdf/10.4319/lo.1987.32.4.0983 https://doi.org/10.4319/lo.1987.32.4.0983.

Agusti, S., & Kalff, J. (1989). The influence of growth conditions on the size dependence of maximal algal density and biomass. Limnology and Oceanography, 34, 1104– 1108. https://aslopubs.onlinelibrary.wiley.com/doi/ epdf/10.4319/lo.1989.34.6.1104 https://doi.org/10.4319/lo.1989.34.6.1104.

Başoğlu, Ş. (1975). Hydrography and Sedimentology of Izmir Inner Bay, Ph D Thesis, 90p, Bornova, Turkey.

Bidle, K. D., Brzezinski, M. A., Long, R. A., Jones, J. L., & Azam, F. (2003). Diminished efficiency in the oceanic silica pump caused by bacreria- mediated silica dissolution. Limnology and Oceanography, 48(5), 1855– 1868. https://aslopubs.onlinelibrary.wiley.com/doi/pdf/10.4319/lo.2003.48.5.1855 https://doi.org/10.4319/ lo.2003.48.5.1855.

Brown, J., Colling, A., Park, D., Phillips, J., Rothery, D., & Wright, J. (1991). Seawater: Its compotition, properties and behaviour. Open University, Pergamon Press., https://www.sciencedirect.com/book/9780080425184/seawaterits-composition-properties-and-behaviour.

Brzezinski, M. A., Alldredge, A. L., & O’Bryan, L. M. (1997). Silica cycling within marine snow. Limnology and Oceanography, 42, 1706–1713. https://aslopubs.onlinelibrary.wiley.com/doi/abs/10.4319/lo.1997.42.8.1706 https://doi. org/10.4319/lo.1997.42.8.1706.

Burdige, D. J. (1993). The biogeochemistry of manganese and iron reduction in marine sediments. Earth-Science Reviews, 35, 249–284. https://www.sciencedirect.com/ science/article/abs/pii/001282529390040E https://doi.org/10.1016/0012-8252(93)90040-E.

Büyükışık, H. B., Sunlu, U., Özkan, E. Y., & Ateş, G. (2015). Biogenic silica distribution in water column and sediment in the Inner Bay of Izmir. Ege University Scientific Research Project Report, 13SÜF002. Bornova-İzmir.

Chauvaud, L., Jean, F., Ragueneau, O., & Thouzeau, G. (2000). Long-term variation of the Bay of Brest ecosystem: Benthicpelagic coupling revisited. Marine Ecology Progress Series, 200, 35–48. https://core.ac.uk/download/pdf/190412928. pdf https://doi.org/10.3354/meps200035.

Conley, D. J., Schelske, C. L., & Stoermer, E. F. (1993). Modification of the biogeochemical cycle of silica with eutrophication. Marine Ecology Progress Series, 101, 179–192. https://www. int-res.com/articles/meps/101/m101p179.pdf https://doi.org/10.3354/meps101179.

DeMaster, D. J. (1981). The supply and accumulation of silica in marine environment. Geochimica et Cosmochimica Acta, 45, 1715–1732. https://www.sciencedirect.com/ science/article/abs/pii/0016703781900065 https://doi.org/10.1016/0016-7037(81)90006-5.

DeMaster, D. J. (2002). The accumulation and cycling of biogenic silica in the southern ocen: Revisiting the marine silica budget. Deep-sea Research. Part II, Topical Studies in Oceanography, 49(16), 3155–3167. https://www.sciencedirect.com/science/article/abs/pii/S0967064502000760?via%3Dihub https://doi.org/10.1016/S0967-0645(02)00076-0.

Duarte, C. M., Agusti, S., & Canfield, D. E., Jr. (1990). Size plasticity of freshwater phytoplankton: Implications for community structure. Limnology and Oceanography, 35(8), 1846–1851. https://aslopubs.onlinelibrary.wiley.com/doi/epdf/10.4319/lo.1990.35.8.1846 https://doi.org/10.4319/lo.1990.35.8.1846.

Fouillaron, P., Claquin, P., L’Helguen, S., Huonnic, P., MartinJezequel, V., Masson, A., Longphuirt, S., Pondaven, P., Thouzeau, G., & Leynaert, A. (2007). Response of phytoplankton community to increased nutrient inputs: A mesocosm experiment in the Bay of Brest (France). Journal of Experimental Marine Biology and Ecology, 351, 188–198. https://www.sciencedirect.com/science/article/abs/pii/S0022098107002985 https://doi.org/10.1016/j.jembe.2007.06.009.

Gaudette, H. E., Flight, W. R., Toner, L., & Folger, D. W. (1974). An Inexpensive Titration Method for the Determination of Organic Carbon in Recent Sediments. Journal of Sedimentary Petrology, 44, 249–253. https://pubs.geoscienceworld.org/sepm/jsedres/articleabstract/44/1/249/96702/An-inexpensive-titrationmethod-for-the?redirectedFrom=PDF.

Güven, D. E., & Akinci, G. (2008). Heavy metals partitioning in the sediments of Izmir Inner Bay. Journal of Environmental Sciences (China),20(4), 413–418. https://www.sciencedirect. om/science/article/abs/pii/S1001074208620720 https://doi.org/10.1016/S1001-0742(08)62072-0 PMID:18575124.

Hily, C. (1991). Is the activity of benthic suspension feeders a factor controlling water quality in the Bay of Brest? Marine Ecology Progress Series, 69, 179–188. https://www. int-res.com/articles/meps/69/m069p179.pdf https://doi.org/10.3354/meps069179.

Hurd, D. C. (1973). Interactions of Biogenic Opal, sediment and seawater in the cente equatorial pasific. Geochemica et Cosmochemica Acta, 37(10), 2257-2266 IN1, 2267-2282. https://www.sciencedirect.com/science/article/abs/pii/0016703773901038.

Ishikawa, A., & Taniguchi, A. (1996). Contribution of benthic cysts to the population dynamics of Scrippsiella spp. (Dinophyceae) in Onagawa Bay, northeast Japan. Marine Ecology Progress Series, 140, 169–178. https://www.jstor.org/stable/24857170?seq=1 https://doi.org/10.3354/meps140169.

Jacobson, D. M., & Anderson, D. M. (1986). The cate heterotrophic dinoflagellates: Feeding behavior and mechanisms. Journal of Phycology, 22, 249–258. https://onlinelibrary. wiley.com/doi/abs/10.1111/j.1529-8817.1986.tb00021.x https://doi.org/10.1111/j.1529-8817.1986.tb00021.x.

Janofske, D. (2000). Scripsiella trochoidea and Scripsiella regalis nov. Comb. (Peridiniales, dinophyceae): A comparison. Journal of Phycology, 36, 178–189. https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1529-8817.2000.98224.x https://doi.org/10.1046/j.1529-8817.2000.98224.x.

Jantschke, A., Weiner, S., Schertel, A., Addadi, L., & Pinkas, I. (2019). Biomineralization pathways in calcifying dinoflagellates: Uptake, storage in MgCaP-rich bodies and formation of the Shell. Acta Biomaterialia, 86, 1–44. https://www.sciencedirect.com/science/article/pii/S1742706119307925 PMID:31785382.

Koray, T., Büyükışık, B., Parlak, H., & Gökpınar, Ş. (1992). Unicellular organisms effecting sea water quality in the bay of Izmir: Red tides and other blooming. Doğa Turkish Journal of Biology, 16, 135–157.

Koray, T. (2001). A check-list for phytoplankton of Turkish seas. (in turkish). Ege University Journal of Fisheries Aquatic Sciences, 18(1-2), 1–23.

Koscchinsky, A., Gaye-Haake, B., Arndt, C., Maue, G., Spitzy, A., Winkler, A., & Halbach, P. (2001). Experiments on the influence of sediment disturbance on the biogeochemistry of the deep sea environment. Deep-sea Research. Part II, Topical Studies in Oceanography, 48(17-18), 3629–3651. https://www.sciencedirect.com/science/article/abs/pii/ S0967064501000601 https://doi.org/10.1016/S0967- 0645(01)00060-1.

Martin, D. F. (1972). Marine chemistry, v. l. Analytical methods. Marcel Dekker, New York. xi + 389 p. https:// aslopubs.onlinelibrary.wiley.com/doi/abs/10.4319/ lo.1973.18.1.0181a.

Nelson, D. M., Brzezinski, M. A., Leynaerth, A., & Queguiner, B. (1995). Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles, 9, 359–372. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/95GB01070 https://doi.org/10.1029/95GB01070.

Nuzzo, L., & Montresor, M. (1999). Different excystment patterns in two calcareous cyst-producing species of the dinoflagellate genus Scrippsiella. Journal of Plankton Research, 21(10), 2009–2018. https://academic.oup.com/plankt/article/21/10/2009/1538409 https://doi.org/10.1093/plankt/21.10.2009.

Olsen, L. M., Öztürk, M., Sakshaug, E., & Johnsen, G. (2006). Phytosynthesis-induced phosphate precipitation in seawater: Ecological implications for phytoplankton. Marine Ecology Progress Series, 319, 103–110. https://pdfs.semanticscholar.org/5046/d374c5848410ebc91137461c c3bc6d7d27d3.pdf https://doi.org/10.3354/meps319103.

Ozkan, E. Y., Kocatas, A., & Buyukisik, B. (2008). Nutrient dynamics between sediment and overlying water in the inner part of Izmir Bay, Eastern Aegean. Environmental Monitoring and Assessment, 143, 313–325. https://link.springer.com/article/10.1007/s10661-007-9984-8 https:// doi.org/10.1007/s10661-007-9984-8 PMID:17926138.

Ozkan, E. Y. (2012). A new assessment of heavy metal contaminations in an Europhicated Bay (Inner Izmir Bay, Turkey). Turkish Journal of Fisheries and Aquatic Sciences, 12, 135–147. https://www.trjfas.org/uploads/pdf_554.pdf https://doi.org/10.4194/1303-2712-v12_1_16.

Ozkan, E. Y., Buyukisik, H. B., & Kontas, A. (2012). Biogeochemical behavior and distribution of biogenic silica in marine sediments from Izmir Bay, Aegean Sea (Turkey). Marine Chemistry, 164, 1–8. https://www.sciencedirect.com/ science/article/abs/pii/S0304420314000826 https://doi.org/10.1016/j.marchem.2014.05.002.

Passow, U., Alldredge, A. L., & Logan, B. E. (1994). The role of particulate carbohydrate exudates in the flocculation of diatom blooms. Deep-Sea Researh I, 41, 335–357. https://www.sciencedirect.com/science/article/pii/0967063794900078.

Peinert, R., vonBodungen, B., & Smetacek, V. S. (1989). Food web structure and loss rate. In W. H. Berger, V. S. Smetacek, & G. Wefer (Eds.), Productivity of the ocean: present and past (pp. 35–48). John Wiley&Sons., https://onlinelibrary.wiley.com/doi/abs/10.1002/gj.3350260119.

Raymond, J. E. G. (1980). Plankton and productuvity in the oceans Vol. 1 phytoplankton. 2nd edition, Chapter 4. The algae of the phytoplankton. Pergamon press NY, 489 p.1980. https://www.elsevier.com/books/plankton-andproductivity-in-the-oceans/raymont/978-0-08-021551-8.

Riding, R. (2006). Cyanobacterial calcification, carbon dioxide concentrating mechanisms and Proterozoic-Cambrian in atmospheric composition. Geobiology, 4, 299–316. https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1472-4669.2006.00087.x https://doi.org/10.1111/j.1472- 4669.2006.00087.x.

Ryther, J. H., & Officer, C. B. (1981). Impact of nutrient enrichment on water uses. In N. A. Crowin (Ed.), Estuaries and nutrients (pp. 247–261). Humana Press., https://link. springer.com/chapter/10.1007/978-1-4612-5826-1_11 https://doi.org/10.1007/978-1-4612-5826-1_11.

Shin, H. H., Jung, S. W., Jang, M., & Kim, M. (2013). Effect of pH on the morphology and viability of Scrippsiella trochoidea cysts in the hypoxic zone of a eutrophied area. Harmful Algae, 28, 37–45. https://agris.fao.org/agris-search/search.do?recordID=US201500083917 https://doi.org/10.1016/j.hal.2013.05.011.

Smetacek, V., vonBodungen, B., Knoppers, B., Peinert, R., Pollehne, F., Stegmann, P., & Zeitzschel, B. (1984). Seasonal stages characterizing the annual cycle of an inshore pelagic system. Rapports et Proces-Verbaux des Reunions - Conseil International pour l’Exploration de la Mer, 183, 126– 135. https://oceanrep.geomar.de/21589/.

Stenuite, S., Pirlot, S., Hardy, M. A., Sarmento, H., Tarbe, A. L., Leporcq, B., & Descy, J. P. (2007). Phytoplankton production and growth rate in Lake Tanganyika: Evidence of a decline in primary productivity in recent decades. Freshwater Biology, 52, 2226–2239. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2427.2007.01829.x https://doi. org/10.1111/j.1365-2427.2007.01829.x.

Strickland, J. D. H., & Parsons, T. R. (1972). Fisheries Research Board of Canada, Bulletin: Vol. 167. A Practical Handbook of Seawater Analyses (2nd ed.)., https://epic.awi.de/id/ eprint/39262/1/Strickland-Parsons_1972.pdf.

Sturm, M., Zeh, U., Mueller, J., Sigg, L., & Stabel, H. H. (1982). Suspension material in lake Constance studied by periodic sampling of sediments. Eclogae Geologicae Helvetiae, 75, 579–588.

Sunlu, U., Büyükışık, H. B., Koray, T., Von Bröckel, K., Sunlu, F. S., Sever, T. M., Gençay-Aydın, H., Aksu, M., Aydın, A., & Orçun, E. (2005). The effects of the activation of the big canal project on lower trophic levels in the waters of the Izmir Bay. TUBITAK-Project Report, (No: 102Y), 116.

Svensen, C., Egge, J. K., & Stiansen, J. E. (2001). Can silicate and turbulence regulate the vertical flux of biogenic matter? A mesocosm study. Marine Ecology Progress Series, 217, 67–80. https://imr.brage.unit.no/imrxmlui/handle/11250/108699 https://doi.org/10.3354/meps217067.

Tande, K. S., & Slagstad, D. (1985). Assimilation efficiency in herbivorous aquatic organisms—The potential of the ratio method using 14C and biogenic silica as markers. Limnology and Oceanography, 30, 1093–1099. https:// aslopubs.onlinelibrary.wiley.com/doi/pdfdirect/10.4319/lo.1985.30.5.1093 https://doi.org/10.431 9/lo.1985.30.5.1093.

Tengberg, A., Almroth, E., & Hall, P. (2003). Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments: Insitu measurements using new experimental technology. Journal of Experimental Marine Biology and Ecology, 285, 119–142. https://www.sciencedirect.com/science/article/abs/pii/S0022098102005233 https://doi.org/10.1016/S0022- 0981(02)00523-3.

Thomsen, L., Graf, G., Martens, V., & Steen, E. (1994). An instrument for sampling water from the benthic boundary layer. Continental Shelf Research, 14, 871–882. https://www.sciencedirect.com/science/article/abs/ pii/0278434394900779 https://doi.org/10.1016/0278-4343(94)90077-9.

Tréguer, P., Nelson, D. M., Van Bennekom, A. J., Demaster, D. J., Leynaert, A., & Quéguiner, B. (1995). The silica balance in the world ocean: A reestimate. Science, 268, 375–379. https://pubmed.ncbi.nlm.nih.gov/17746543/ https://doi.org/10.1126/science.268.5209.375 PMID:17746543.

Trequer, P., & DelaRocha, C. J. (2013). The World ocean silica cycyle. Annual Review of Marine Science, 5, 477–501. https://www.sciencedirect.com/science/article/pii/ S1631071314000972 https://doi.org/10.1146/annurevmarine-121211-172346.

Tréguer, P., Bowler, C., Moriceau, B., Dutkiewicz, S., Gehlen, M., Aumont, O., Bittner, L., Dugdale, R., Finkel, Z., Ludicone, D., Jahn, O., Guidi, L., Lasbleiz, M., Leblanc, K., Levy, M., & Pondaven, P. (2018). Influence of diatom diversity on the ocean biological carbon pump. Nature Geoscience, 11, 27– 37. https://www.nature.com/articles/s41561-017-0028-x https://doi.org/10.1038/s41561-017-0028-x.

Vangriesheim, A., & Khripounoff, A. (1990). Near-bottom particle concentration and flux: Temporal variations observed with sediment traps and nephelometer on the Meriadzek Terrace, Bay of Biscay. Progress in Oceanography, 24, 103–161. https://www.sciencedirect.com/science/article/abs/pii/007966119090023U https:// doi.org/10.1016/0079-6611(90)90023-U.

Yamada, S. S., & D’Elia, C. F. (1984). Silicic acid regeneration from estuarine sediment cores. Marine Ecology Progress Series, 18, 113–118. https://www.int-res.com/articles/meps/18/ m018p113.pdf https://doi.org/10.3354/meps018113.

Zhao, X., Yang, W., Ma, H., Li, J., Chen, M., Fang, Z., Zhang, X., Zeng, J., Qiu, Y., & Zheng, M. (2019). Seasonal variations in the abundance and sinking flux of biogenic silica in Daya Bay, northern South China Sea. Oceanologia, 61, 239–251. https://www.sciencedirect.com/science/article/pii/S0078323418301271 https://doi.org/10.1016/j. oceano.2018.11.003.

Opublikowane

2023-09-29

Jak cytować

Özkan, E. Y., & Buyukisik, H. B. (2023). Control mechanisms on the reactive silicate fluxes by using on board resuspension experiments in the eutrophicated coastal environment. Oceanological and Hydrobiological Studies, 52(3), 343–365. https://doi.org/10.26881/oahs-2023.3.08

Numer

Dział

Artykuły