Comprehensive assessment of water and sediment quality in Lake Nasser, Egypt, using various potential risk indices

Authors

  • Amaal M. Abdel-Satar National Institute of Oceanography and Fisheries
  • Salem G. Salem National Institute of Oceanography and Fisheries
  • Seliem M. El-Sayed National Institute of Oceanography and Fisheries
  • Mohamed E. Goher National Institute of Oceanography and Fisheries
  • Ghada S. Abdelaziz National Institute of Oceanography and Fisheries
  • Afify D.G. Al-Afify National Institute of Oceanography and Fisheries

DOI:

https://doi.org/10.26881/oahs-2024.1.06

Keywords:

Lake Nasser, water quality, heavy metals, sediment analysis, potential risk indices

Abstract

Lake Nasser is a freshwater lake that supplies over 95% of Egypt’s freshwater budget. Therefore, the quality of water in the lake is critical for its conservation. In addition to assessing the metal pollution load, the quality of water and sediment in the lake was assessed by collecting water and sediment samples for metal content analysis. Lake Nasser is a warm monomictic water body with a single circulation cycle in the cold months. Dissolved oxygen content in bottom water samples often dropped significantly to levels below international guidelines, reflecting reduced rates of photosynthetic activity. Although 50% of the lake’s water samples contained Pb concentrations slightly above the World Health Organization’s (WHO) limit for drinking water, the metal pollution index did not exceed the critical level and was classified as low metal water pollution. Based on the geoaccumulation index (I-geo), the enrichment factor (EF) and the pollution load index, the sediments of Lake Nasser are practically uncontaminated with metals. Ni has the highest EF and I-geo values, while Ni and Cd contributed the most to the ecological risk and toxic risk index. The obtained results revealed that Cd and Ni in the sediments may pose a threat to organisms living in Lake Nasser.

Downloads

Download data is not yet available.

References

Abd Ellah, R. G. (2020). Physical properties of inland lakes and their interaction with global warming: A case study of Lake Nasser, Egypt. Egyptian Journal of Aquatic Research, 46, 103–115. https://doi.org/10.1016/j.ejar.2020.05.004.

Abdelmageed, A. A., Ellah, R. G. A., Abdel-Satar, A. M., Gawad, S. S. A., Khalifa, N., Zaher, S. S., Othman, A. A., Belal, D. M., El-Hady, H. H. A., Salem, S. G., Abdo, M. H., Haroon, A. M., El-Far, A., Hegab, M. H., Elhaddad, E., ElSherif, D. M., & Al-Afify, A. D. G. (2022). Evaluation of the ecological health and food chain on the shores of four River Nile Islands, Egypt. Environmental Monitoring and Assessment, 194(4), 309. https://doi.org/10.1007/s10661-022-09959-w PMID:35353284.

Abdel-Satar, A. M., Ali, M. H. H., & Goher, M. E. (2017a). Indices of water quality and metal pollution of Nile River, Egypt. Egyptian Journal of Aquatic Research, 43, 21– 29. https://doi.org/10.1016/j.ejar.2016.12.006.

Abdel-Satar, A. M., Ali, M. H. H., & Goher, M. E. (2017b). Distribution and speciation of Fe, Mn, Zn, Cu, Pb and P in surface sediments of Mariut Lake, Egypt. Oceanological and Hydrobiological Studies, 46, 154–167. https://doi. org/10.1515/ohs-2017-0016.

Abdel-Satar, A. M., Belal, D. M., Salem, S. G., Abdelmageed, A. A., Abdo, M. H., Abdel Gawad, S. S., & Al-Afify, A. D. G. (2022). Benthic diatoms and macroinvertebrates status with relevant to sediment quality of islands shores in the Nile River, Egypt. Rendiconti Lincei. Scienze Fisiche e Naturali, 33, 387–405. Advance online publication. https://doi.org/10.1007/s12210-022-01051-2.

Al-Afify, A. D. G., & Abdel-Satar, A. M. (2020). Risk assessment of heavy metal pollution in water, sediment and plants in the Nile River in the Cairo region, Egypt. Oceanological and Hydrobiological Studies, 46, 1–12. https://doi.org/10.1515/ ohs-2020-0001.

Ali, W., & Muhammad, S. (2023). Spatial distribution, ecoenvironmental risks, and source characterization of heavy metals using compositional data analysis in riverine sediments of a Himalayan river, Northern Pakistan. Journal of Soils and Sediments, 23, 2244–2257. https://doi. org/10.1007/s11368-023-03484-0.

Amin, S., Muhammad, S., & Fatima, H. (2021). Evaluation and risks assessment of potentially toxic elements in water and sediment of the Dor River and its tributaries, Northern Pakistan. Environmental Technology & Innovation, 21, 101333. https://doi.org/10.1016/j.eti.2020.101333.

APHA (American Public Health Association). (2005). American Water Works Association. Standard methods for the examination of water and wastewater. New York.

Backman, B., Bodis, D., Lahermo, P., & Rapant, S. (1997). Application of a groundwater contamination index in Finland and Slovakia. Environ. Geol, 36(1–2), 55–64.

Bhateria, R., & Jain, D. (2016). Water quality assessment of lake water: A review. Sustainable Water Resources Management, 2, 161–173. https://doi.org/10.1007/s40899- 015-0014-7.

CCME (Canadian Council of Ministers of the Environment). (2001). Canadian water quality guidelines for the protection of aquatic life: CCME Water Quality Index 1.0, User’s Manual. In Canadian environmental quality guidelines, 1999. Canadian Council of Ministers of the Environment.

CCME (Canadian Council of Ministers of the Environment). (2007). For the protection of aquatic life 2007. In: Canadian Environmental Quality Guidelines, 1999, Canadian Council of Ministers of the Environment, 1999, Winnipeg.

CCME (Canadian Council of Ministers of the Environment). (2014). Canadian Water Quality Guidelines: Cadmium. Scientific Criteria Document. Canadian Council of Ministers of the Environment, Winnipeg. ISBN 978-1- 77202-000-7 PDF.

Chen, Y., Wang, L., Liang, T., Xiao, J., Li, J., Wei, H., & Dong, L. (2019). Major ion and dissolved heavy metal geochemistry, distribution, and relationship in the overlying water of Dongting Lake, China. Environmental Geochemistry and Health, 41, 1091–1104. https://doi.org/10.1007/s10653- 018-0204-y PMID:30284697.

Darwish, M. A. G. (2013). Geochemistry of the High Dam Lake sediments, South Egypt: Implications for environmental significance. International Journal of Sediment Research, 28, 544–559. https://doi.org/10.1016/S1001-6279(14)60012-3.

Effler, S. W., Doerr, S. M., Brooks, C. M., & Rowell, H. C. (1990). Chloride in the pore water and water column of Onondaga Lake, N.Y., U.S.A. Water, Air, and Soil Pollution, 51, 315– 326. https://doi.org/10.1007/BF00158229.

El Sayed, S. M., Hegab, M. H., Mola, H. R. A., Ahmed, N. M., & Goher, M. E. (2020). An integrated water quality assessment of Damietta and Rosetta branches (Nile River, Egypt) using chemical and biological indices. Environmental Monitoring and Assessment, 192, 228. https://doi.org/10.1007/s10661- 020-8195-4 PMID:32162005.

ElKobtan, H., Salem, M., Attia, K., Ahmed, S., & Abou El-Magd, I. (2016). Sedimentological study of Lake Nasser; Egypt, using integrated improved techniques of core sampling, X-ray diffraction and GIS platform. Cogent Geoscience, 2(1), 1168069. https://doi.org/10.1080/23312041.2016.116806 9.

El-Shabrawy, G. M. (2009). Lake Nasser-Nubia. In H. J. Dumont (Ed.), The Nile: Origin, Environments, Limnology and Human Use, Monographiae Biologicae (pp. 125– 155). Springer. https://doi.org/10.1007/978-1-4020-9726- 3_7.

EPA (Environmental Protection Agency) (2006). Region III BTAG Freshwater Sediment Screening Benchmarks 8/2006.

Eren, S. T., Sungur, A., & Ekinci, H. (2021). Trace metal fractions, sources, and risk assessment in sediments from Umurbey Stream (Çanakkale-Turkey). Environmental Monitoring and Assessment, 193, 347. https://doi. org/10.1007/s10661-021-09134-7 PMID:34018025.

Farahat, H. I., & Salem, S. G. (2015). Effect of flooding on distribution and mode of transportation of Lake Nasser sediments, Egypt. Egyptian Journal of Aquatic Research, 41, 165–176. https://doi.org/10.1016/j.ejar.2015.03.009.

Folk, R. L. (1974). Petrology of sedimentary rocks. Hemphills. Gao, L., Wang, Z., Li, S., & Chen, J. (2018). Bioavailability and toxicity of trace metals (Cd, Cr, Cu, Ni, and Zn) in sediment cores from the Shima River, South China. Chemosphere, 192, 31–42. https://doi.org/10.1016/j. chemosphere.2017.10.110 PMID:29091794.

Goher, M. E., Ali, M. H. H., & El-Sayed, S. M. (2019). Heavy metals contents in Nasser Lake and the Nile River, Egypt: An overview. Egyptian Journal of Aquatic Research, 45, 301– 312. https://doi.org/10.1016/j.ejar.2019.12.002.

Goher, M. E., Farhat, H. I., Abdo, M. H., & Salem, S. G. (2014). Metal pollution assessment in the surface sediment of Lake Nasser, Egypt. Egyptian Journal of Aquatic Research, 40, 213–224. https://doi.org/10.1016/j.ejar.2014.09.004.

Guzeva, A., Slukovskii, Z., Dauvalter, V., & Denisov, D. (2021). Trace element fractions in sediments of urbanised lakes of the arctic zone of Russia. Environmental Monitoring and Assessment, 193, 378. https://doi.org/10.1007/s10661-021- 09166-z PMID:34075483.

Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.

Hakanson, L. (1988). Metal monitoring in coastal environments. In U. Seeliger, L. D. Lacerda, & S. R. Patchineelam (Eds.), Metals in Coastal Environments of Latin America (pp. 240–257). Springer Verlag. https://doi.org/10.1007/978-3- 642-71483-2_21.

Heggy, E., Sharkawy, Z., & Abotalib, A. Z. (2021). Egypt’s water budget deficit and suggested mitigation policies for the Grand Ethiopian Renaissance Dam filling scenarios. Environmental Research Letters, 16, 074022. https://doi.org/10.1088/1748-9326/ac0ac9.

Holmer, M., & Storkholm, P. (2001). Sulphate reduction and sulphur cycling in lake sediments: A review. Freshwater Biology, 46, 431–451. https://doi.org/10.1046/j.1365-2427.2001.00687.x.

Imam, N., El-Sayed, S. M., & Goher, M. E. (2020). Risk assessments and spatial distributions of natural radioactivity and heavy metals in Nasser Lake, Egypt. Environmental Science and Pollution Research International, 27, 25475–25493. https:// doi.org/10.1007/s11356-020-08918-7 PMID:32350837.

Kansara, P., Li, W., El-Askary, H., Lakshmi, V., Piechota, T., Struppa, D., & Abdelaty, S. M. (2021). An assessment of the filling process of the Grand Ethiopian Renaissance Dam and its impact on the downstream countries. Remote Sensing (Basel), 13(4), 11. https://doi.org/10.3390/rs13040711.

Kim, J. H., Gibb, J. H., & Howe, P. D. (2006). Concise international chemical assessment document 69. World Health Organization. Kouadia, L., & Trefry, J. H. (1987). Sediment trace metal contamination in the Ivory Coast, West, Africa. Water, Air, and Soil Pollution, 32, 145–154. https://doi.org/10.1007/BF00227690.

Kowalska, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination-A review. Environmental Geochemistry and Health, 40, 2395–2420. https://doi.org/10.1007/s10653-018-0106-z PMID:29623514.

Lawson, R., & Anderson, M. A. (2007). Stratification and mixing in Lake Elsinore, California: An assessment of axial flow pumps for improving water quality in a shallow eutrophic lake. Water Research, 41, 4457–4467. https://doi.org/10.1016/j.watres.2007.06.004 PMID:17624395.

Loring, D. H., & Rantala, R. T. T. (1992). Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Science Reviews, 32, 235–283. https://doi.org/10.1016/0012-8252(92)90001-A.

Louhi, A., Hammadi, A., & Achouri, M. (2012). Determination of some heavy metal pollutants in sediments of the Seybouse River in Annaba, Algeria. Air, Soil and Water Research, 5, 91–101. https://doi.org/10.4137/ASWR. S10081.

Maina, C. W., Sang, J. K., Raude, J. M., & Mutua, B. M. (2019). Geochronological and spatial distribution of heavy metal contamination in sediment from Lake Naivasha, Kenya. J. Radia. Res. Appl. Sci., 12, 37–54. https://doi.org/10.1080/16 878507.2019.1593718.

Mohamed, F. A. S. (2008). Bioaccumulation of Selected Metals and Histopathological Alterations in Tissues of Oreochromis niloticus and Lates niloticus from Lake Nasser, Egypt. Global Veterinaria, 2, 205–218.

Mohan, S. V., Nithila, P., & Reddy, S. J. (1996). Estimation of heavy metal in drinking water and development of heavy metal pollution index. Journal of Environmental Science and Health. Part A, Environmental Science and Engineering & Toxic and Hazardous Substance Control, 31, 283–289. https://doi.org/10.1080/10934529609376357.

Muhammad, S., & Usman, Q. A. (2022). Heavy metal contamination in water of Indus River and its tributaries, Northern Pakistan: Evaluation for potential risk and source apportionment. Toxin Reviews, 41, 380–388. https://doi.or g/10.1080/15569543.2021.1882499.

Muhammad, S. (2023). Evaluation of heavy metals in water and sediments, pollution, and risk indices of Naltar Lakes, Pakistan. Environmental Science and Pollution Research International, 30, 28217–28226. https://doi.org/10.1007/s11356-022-24160-9 PMID:36399291.

Müller, G. (1969). Index of geo-accumulation in sediments of the Rhine River. GeoJournal, 2(3), 109–118.

Negm, A., Elsahabi, M., Abdel-Nasser, M., Mahmoud, K., & Ali, K. (2018). Impacts of GERD on the accumulated sediment in Lake Nubia using machine learning and GIS techniques. In A. Negm & S. Abdel-Fattah (Eds.), Grand Ethiopian Renaissance Dam versus Aswan High Dam. The Handbook of Environmental Chemistry (Vol. 79). Springer., https:// doi.org/10.1007/698_2018_294.

Othman, A. A., Al-Afify, A. D. G., Abdel-Satar, A. M., & Ramadan, M. F. (2020). Quality assessment of surface water using the Nile Chemical Pollution Index (NCPI) and microbiological pollution of the Rosetta Branch (Nile River, Egypt). African Journal of Aquatic Science, 46, 1–13.

Pedersen, F., Bjørnestad, E., Andersen, H. V., Kjølholt, J., & Poll, C. (1998). Characterization of sediments from Copenhagen Harbour by use of biotests. Water Science and Technology, 37, 233–240. https://doi.org/10.2166/ wst.1998.0757.

Prasad, B., & Bose, J. M. (2001). Evaluation of heavy metal pollution index for surface and spring water near a limestone mining area of the lower Himalayas. Environmental Geology (Berlin), 41, 183–188. https://doi.org/10.1007/ s002540100380.

Rajeshkumar, S., Liu, Y., Zhang, X., Ravikumar, B., Bai, G., & Li, X. (2018). Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere, 191, 626–638. https://doi. org/10.1016/j.chemosphere.2017.10.078 PMID:29078187.

Rizk, R., Juzsakova, T., Cretescu, I., Rawash, M., Sebestyén, V., Le Phuoc, C., Kovács, Z., Domokos, E., Rédey, Á., & Shafik, H. (2020). Environmental assessment of physical-chemical features of Lake Nasser, Egypt. Environmental Science and Pollution Research International, 27, 20136–20148. https://doi.org/10.1007/s11356-020-08366-3 PMID:32239409.

Sayed, M. F., & Abdel-Satar, A. M. (2009). Chemical assessment of Wadi El-Rayan Lakes - Egypt. American-Eurasian Journal of Agricultural & Environmental Sciences, 5, 53–62.

Shalash, S. (1980). Effect of sedimentation on storage capacity of high Aswan Dam reservoir (Nile Research Institute Report, National water Research Center), Cairo. Sharifinia, M., Ramezanpour, Z., Imanpour, J., . . .. (2013). Water quality assessment of the Zarivar Lake using physicochemical parameters and NSF- WQI indicator, Kurdistan Province-Iran. International Journal of Advanced Biological and Biomedical Research, 1, 302–312.

Sugunam, V. V. (1995). Reservoir fisheries of India. FAO Fish Tech. Pap. No. 345 Rome, 423 pp. Tanabe, Y., Hori, M., Mizuno, A. N., Osono, T., Uchida, M., Kudoh, S., & Yamamuro, M. (2019). Light quality determines primary production in nutrient-poor small lakes. Scientific Reports, 9(1), 4639. https://doi.org/10.1038/s41598-019- 41003-9 PMID:30874599.

Tomlinson, D. C., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy metals levels in estuaries and the formation of pollution index. Helgoland Marine Research, 33, 566–575.

Weldegebriel, Y., Chandravanshi, B. S., & Wondimu, T. (2012). Concentration levels of metals in vegetables grown in soils irrigated with river water in Addis Ababa, Ethiopia. Ecotoxicology and Environmental Safety, 77, 57–63. https://doi.org/10.1016/j. ecoenv.2011.10.011 PMID:22062152.

WHO. (World Health Organization) (2017). Guidelines for drinking-water quality, fourth ed. incorporating the first addendum, Geneva: WHO, 631p. ISBN: 978-92-4-154995-0.

Yacoub, A. M., Mahmoud, S. A., & Abdel-Satar, A. M. (2021). Accumulation of heavy metals in tilapia fish species and related histopathological changes in muscles, gills and liver of Oreochromis niloticus occurring in the area of Qahr El-Bahr, Lake Al-Manzalah, Egypt. Oceanological and Hydrobiological Studies, 50(1), 1–15. https://doi.org/10.2478/oandhs-2021-0001.

Yahaya, M. I., Jacob, A. G., Agbendeh, Z. M., Akpan, G. P., & Kwasara, A. A. (2012). Seasonal potential toxic metals contents of Yauri river bottom sediments: North western Nigeria. JECE, 4(12), 212–221.

Yousry, M. M. (2017). Total and bio-available phosphorus in sediments and its contribution to Lake Nasser eutrophication, Egypt. Egypt. J. Aquat. Biol. Fish, 21, 29– 44. https://doi.org/10.21608/ejabf.2017.3727.

Zhang, G., Bai, J., Zhao, Q., Lu, Q., Jia, J., & Wen, X. (2016). Heavy metals in wetland soils along a wetlandforming chronosequence in the Yellow River Delta of China: Levels, sources and toxic risks. Ecological Indicators, 69, 331–339. https://doi.org/10.1016/j.ecolind.2016.04.042.

Downloads

Published

2024-03-15

How to Cite

Abdel-Satar, A. M., Salem, S. G., El-Sayed, S. M., Goher, M. E., Abdelaziz, G. S., & Al-Afify, A. D. (2024). Comprehensive assessment of water and sediment quality in Lake Nasser, Egypt, using various potential risk indices. Oceanological and Hydrobiological Studies, 53(1), 40–60. https://doi.org/10.26881/oahs-2024.1.06

Issue

Section

Articles