Species distribution models of Türkiye’s endemic genus: Seminemacheilus Banarescu & Nalbant, 1995 (Cypriniformes: Nemacheilidae)
DOI:
https://doi.org/10.26881/oahs-2024.2.08Keywords:
Ecological niche model, global climate change, ichthyogeography, Maxent, Seminemacheilus, WallaceAbstract
Climate change is having a major impact on species distribution and habitat loss, especially for species with restricted ranges. The genus Seminemacheilus is endemic to Türkiye and includes six species. This study investigated the current distribution of the genus Seminemacheilus and its possible distribution in 2050 and 2070 using the Wallace platform, a Maxent modeling method. Simulations of future projections indicated that bioclimatically suitable habitats of Seminemacheilus spp. will be limited in 2050 and nearly extinct in 2070. The model is primarily affected by temperature and precipitation, which are directly associated with the phenomenon of global warming. It has been established that conservation strategies must be developed to protect the species of the genus and avoid habitat deterioration.
Downloads
References
Aksu, S. (2021). Current and future potential habitat suitability prediction of an endemic freshwater fish species Seminemacheilus lendlii (Hankó, 1925) using Maximum Entropy Modelling (MaxEnt) under climate change scenarios: Implications for conservation. LimnoFish, 7(1), 83–91. https://doi.org/10.17216/limnofish.758649.
Anonym (2023) https://news.mongabay.com/2012/03/turkeys-rich-biodiversity-at-risk/Accessed 02.11.2023.
Baldwin, R. A. (2009). Use of maximum entropy modeling in wildlife research. Entropy (Basel, Switzerland), 11(4), 854– 866. https://doi.org/10.3390/e11040854.
Bănărescu, P. G., & Nalbant, T. T. (1995). A generical classification of Nemacheilinae with description of two new genera (Teleostei: Cypriniformes: Cobitidae). Travaux du Muséum d’Histoire Naturelle Gr Antipa, 35, 429–496.
Bizama, G., Jan, A., Olivos, A., Fuentes-Jaque, G., Valdovinos, C., Urrutia, R., & Arismendi, I. (2023) Climate change can disproportionately reduce habitats of stream. https://doi. org/10.21203/rs.3.rs-3356507/v1.
Comte, L., Buisson, L., Daufresne, M., & Grenouillet, G. (2013). Climate‐induced changes in the distribution of freshwater fish: Observed and predicted trends. Freshwater Biology, 58(4), 625–639. https://doi.org/10.1111/fwb.12081.
Çiçek, E. (2020). Seminemacheilus dursunavsari, a new nemachelid species (Teleostei: Nemacheilidae) from Turkey. Iranian Journal of Ichthyology, 7(1), 68–77. https:// doi.org/10.22034/iji.v7i1.494.
Çiçek, E., Sungur, S., Fricke, R., & Seçer, B. (2023). Freshwater lampreys and fishes of Türkiye; an annotated checklist 2023. Turkish Journal of Zoology, 47(6), 324-468. https:// doi.org/10.55730/1300-0179.3147.
Çiçek, E., Sungur, S., & Fricke, R. (2020). Freshwater lampreys and fishes of Turkey; a revised and updated annotated checklist 2020. Zootaxa, 4809(2), 2, 241-270.https://doi. org/10.11646/zootaxa.4809.2.2 PMID:33055935.
Çiçek, E., & Sungur, S. (2020). Ichthyofauna of Sultan Marshes (Turkey) and Possible Effects of Fish Invasion from Seyhan Basin on Diversity and Conservation. Commagene Journal of Biology, 4(2), 115–120. https://doi.org/10.31594/commagene.817306.
Çiçek, E., Fricke, R., Sungur, S., & Eagderi, E. (2018). Endemic freshwater fishes of Turkey. FishTaxa : Journal of Fish Taxonomy, 3(4), 1–39.
Donald, A., Jackson, P., Peres-Neto, R., & Olden, J. N. (2001). What controls who is where in freshwater fish communities - the roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences, 58(1), 157–170.
Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, A. H., Soto, D., Stiassny, M. L. J., & Sullivan, C. A. (2006). Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society, 81(2), 163–182. https:// doi.org/10.1017/S1464793105006950 PMID:16336747.
Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40(1), 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159.
Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity & Distributions, 17(1), 43–57. https://doi. org/10.1111/j.1472-4642.2010.00725.x.
Engler, J. O., Rödder, D., Elle, O., Hochkirch, A., & Secondi, J. (2013). Species distribution models contribute to determine the effect of climate and interspecific interactions in moving hybrid zones. Journal of Evolutionary Biology, 26(11), 2487–2496. https://doi.org/10.1111/jeb.12244 PMID:24016292.
Esmaeili, H. R., Gholamhosseini, A., Mohammadian-Kalat, T., & Aliabadian, M. (2018). Predicted changes in climatic niche of Alburnus species (Teleostei: Cyprinidae) in Iran until 2050. Turkish Journal of Fisheries and Aquatic Sciences, 18, 995–1003. https://doi.org/10.4194/1303-2712-v18_8_08.
Erk’akan, F., Nalbant, T. T., & Özeren, S. C. (2007). Seven new species of Barbatula, three new species of Schistura and a new species of Seminemacheilus (Ostariophysi: Balitoridae: Nemacheilinae) from Turkey. Journal of Fisheries International, 2(1), 69–85.
Fei, S., Liang, L., Paillet, F., Steiner, K., Fang, J., Shen, Z., Wang, Z., & Hebard, F. (2012). Modelling chestnut biogeography for American chestnut restoration. Diversity & Distributions, 18(8), 754–768. https://doi.org/10.1111/j.1472-4642.2012.00886.x.
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086.
Fricke, R., Bilecenoğlu, M., Sarı, H.M. (2007). Annotated checklist of fish and lamprey species (Gnathostomata and Petromyzontomorphi) of Turkey, including a Red List of threatened and declining species. Stuttgarter Beitr. Naturk. Ser. A Nr. 706, 169 S.
Freyhof, J. (2014). Seminemacheilus lendlii. The IUCN Red List of Threatened Species 2014: e.T39289A19007036. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2014-1.RLTS. T39289A19007036.en.
Fricke, R., Eschmeyer, W. N., & Van der Laan, R. (2023). Eschmeyer’s Catalog of Fishes: Genera, Species, References http://researcharchive.calacademy.org/research/ ichthyology/catalog/fishcatmain.asp.
Froese, R., & Pauly, D. (Eds.). (2023). FishBase. World Wide Web electronic publication. www.fishbase.org.
GBIF.org (2022). GBIF Occurrence Download https://doi.org/10.15468/dl.96yhxb.
Giannakopoulos, C., Le Sager, P., Bindi, M., Moriondo, M., Kostopoulou, E., & Goodess, C. M. (2009). Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Global and Planetary Change, 68(3), 209–224. https://doi.org/10.1016/j. gloplacha.2009.06.001.
Gür, H. (2019). Species distribution modeling and climate change applications. Ecology and Evolutionary Biology Society Publications 1. (in Turkish) http://www.ekoevo. org/wp-content/uploads/2020/04/GurH_EkoEvo_2019. Pdf.
Hanko, B. (1925). Fische Aus Klein-Asien. Ann. Mus. Nat.Hung. 31, 137-158.
Heino, J., Virkkala, R., & Toivonen, H. (2009). Climate change and freshwater biodiversity: Detected patterns, future trends and adaptations in northern regions. Biological Reviews of the Cambridge Philosophical Society, 84(1), 39–54. https://doi.org/10.1111/j.1469-185X.2008.00060.x PMID:19032595.
IUCN. (2023). The IUCN Red List of Threatened Species. Version 2022-2. https://www.iucnredlist.org.
Kass, J. M., Vilela, B., Aiello-Lammens, M. E., Muscarella, R., Merow, C., & Anderson, R. P. (2018). Wallace: A flexible platform for reproducible modeling of species niches and distributions built for community expansion. Methods in Ecology and Evolution, 9(4), 1151–1156. https://doi. org/10.1111/2041-210X.12945.
KBA. (2023). https://keybiodiversityareasturkey.org/turkeysnature/.
Maestre, F. T. (2006). Linking the spatial patterns of organisms and abiotic factors to ecosystem function and management: Insights from semi-arid environments. Web Ecology, 6(1), 75–87. https://doi.org/10.5194/we-6-75- 2006.
Noroozi, J., Zare, G., Sherafati, M., Mahmoodi, M., Moser, D., Asgarpour, Z., & Schneeweiss, G. M. (2019). Patterns of endemism in Turkey, the meeting point of three global biodiversity hotspots, based on three diverse families of vascular plants. Frontiers in Ecology and Evolution, 7, article 159. 1–12. https://doi.org/10.3389/fevo.2019.00159.
Öztürk, K. (2002). Küresel İklim Değişikliği ve Türkiye’ye Olası Etkileri. G.Ü. Gazi Eğitim Fakültesi Dergisi, 22(1), 47–65.
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231–259. https://doi. org/10.1016/j.ecolmodel.2005.03.026.
Redlands C, ESRI (2011) ArcGIS Desktop: Release 10. Saad, A., Lek, E., Esmaeili, H. R., Fricke, R., Sungur, S., & Eagderi, S. (2023). Freshwater fishes of Syria: A revised and updated annotated checklist-2023. Zootaxa, 5350(1), 1–62. https://doi.org/10.11646/zootaxa.5350.1.1 PMID:38221500.
Sungur, S., Jalili, P., Eagderi, S., & Çiçek, E. (2018). Seminemacheilus ahmeti, a new species of Nemacheilid from Sultan Marshes, Turkey. FishTaxa : Journal of Fish Taxonomy, 3(2), 466–473.
Sungur, S., Çapar, O. B., Çiçek, E., & Eagderi, S. (2023). Threatened fishes of theworld: Seminemacheilus ahmeti Sungur, Jalili, Eagderi & Çiçek, 2018 (Teleostei: Nemacheilidae) with a suggestion of the IUCNRed List category. Taxa, 1, ad23103:1-7.
Trenberth K. E. (2011). Changes in precipitation with climate change. Climate Research, 47(1-2), 123–138. https://doi.org/10.3354/cr00953.
van der Laan, R. (2022) Freshwater Fish List (Almere Netherlands ed., 2022).
Yoğurtçuoğlu B., Kaya, C., Geiger, M. F., & Freyhof, J. (2020). Revision of the genus Seminemacheilus, with the description of three new species (Teleostei: Nemacheilidae). Zootaxa, 4802(3), 5. https://doi.org/10.11646/zootaxa.4802.3.5 PMID:33056045.