Assessment of 8-hydroxy-2-deoxyguanosine activity, apoptosis, acetylcholinesterase and antioxidant enzyme activity in Capoeta umbla brain exposed to chlorpyrifos

Authors

  • Mahinur Kirici Bingöl University

DOI:

https://doi.org/10.26881/oandhs-2022.2.05

Keywords:

fish, brain, neurotoxicity, pesticides, apoptosis, toxicity mechanism

Abstract

In this study, neurotoxic responses to exposure to chlorpyrifos (CPF) at different doses (55 and 110 µg l-1) and at different time intervals (24 and 96 h) were investigated in Siraz fish (Capoeta umbla) using 8-hydroxy 2-deoxyguanosine (8-OHdG) activity, caspase-3, acetylcholinesterase (AChE) and oxidative stress parameters [malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR)]. In this study, the LC50 value of CPF was determined for the first time for C. umbla and calculated as 440 µg l-1. In this study, 12.5% (55 µg l-1) and 25% (110 µg l-1) of the LC50 value were used. The obtained data indicate a significant increase in the MDA level and inhibition of antioxidant enzymes in the brain (p < 0.05). Considering DNA damage and the apoptotic process, no significant changes were found in 8-OHdG and caspase-3 activity at both doses exposed for 24 h, but a significant increase was detected in both markers at 96 hours compared to the control group (p < 0.05). In the case of AChE activity, which is one of the neurotoxic markers in the brain, while inhibition was determined only at the high concentration (110 µg l-1) at the end of 24 hours, a decrease in enzyme activity was observed at the end of 96 hours in both concentration groups. In the light of all these results, we can say that CPF showed inhibitory effects on enzyme activity and inducing effects on MDA, caspase-3 and 8-OHdG levels. Based on these results, it can be concluded that CPF contributes to oxidative stress in fish and may have neurotoxic effects.

Downloads

Download data is not yet available.

References

Adedara, I. A., Owoeye, O., Awogbindin, I. O., Ajayi, B. O., Rocha, J. B. T., & Farombi, E. O. (2018). Diphenyl diselenide abrogates brain oxidative injury and neurobehavioural deficits associated with pesticide chlorpyrifos exposure in rats. Chemico-Biological Interactions, 296, 105–116. https:// doi.org/10.1016/j.cbi.2018.09.016 PMID:30267645.

Aebi, H. (1983). Catalase. In H. U. Bergmeyer (Ed.), Methods in enzymatic analysis (pp. 673–684). Academic Press.

Alak, G., Parlak, V., Aslan, M. E., Uçar, A., Atamanalp, M., & Turkez, H. (2019c). Borax supplementation alleviates hematotoxicity and DNA damage in rainbow trout (Oncorhynchus mykiss) exposed to copper. Biological Trace Element Research, 187(2), 536–542. https://doi. org/10.1007/s12011-018-1399-6 PMID:29926392.

Alak, G., Parlak, V., Ucar, A., Yeltekin, A. C., Ozgeris, F. B., Cağlar, O., Atamanalp, M., & Turkez, H. (2020). Oxidative and DNA damage potential of colemanite on zebrafish: Brain, liver and blood. Turkish Journal of Fisheries and Aquatic Sciences, 20(8), 593–602. https://doi.org/10.4194/1303- 2712-v20_8_02.

Alak, G., Uçar, A., Parlak, V., Yeltekin, A. C., Özgeriş, F. B., Atamanalp, M., & Turkez, H. (2021). Antioxidant potential of Ulexite in Zebrafish brain: Assessment of oxidative DNA damage, apoptosis, and response of antioxidant defense system. Biological Trace Element Research, 199(3), 1092–1099. https://doi.org/10.1007/s12011-020-02231-7 PMID:32557103.

Alak, G., Ucar, A., Parlak, V., Yeltekin, A. C., Taş, I. H., Ölmez, D., Kocaman, E. M., Yılgın, M., Atamanalp, M., & Yanık, T. (2017b). Assessment of 8-hydroxy-2-deoxyguanosine activity, gene expression and antioxidant enzyme activity on rainbow trout (Oncorhynchus mykiss) tissues exposed to biopesticide. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 203, 51–58. https://doi. org/10.1016/j.cbpc.2017.10.007 PMID:29111472.

Alak, G., Yeltekin, A. C., Tas, I. H., Ucar, A., Parlak, V., Topal, A., Kocaman, E. M., & Atamanalp, M. (2017a). Investigation of 8-OHdG, CYP1A, HSP70 and transcriptional analyses of antioxidant defence system in liver tissues of rainbow trout exposed to eprinomectin. Fish & Shellfish Immunology, 65, 136–144. https://doi.org/10.1016/j.fsi.2017.04.004 PMID:28400213.

Alak, G., Yeltekin, A. C., Özgeriş, F. B., Parlak, V., Uçar, A., Keleş, M. S., & Atamanalp, M. (2019b). Therapeutic effect of N- acetyl cysteine as an antioxidant on rainbow trout’s brain in cypermethrin toxicity. Chemosphere, 221, 30–36. https://doi.org/10.1016/j.chemosphere.2018.12.196 PMID:30634146.

Alak, G., Ucar, A., Yeltekin, A. C., Parlak, V., Nardemir, G., Kızılkaya, M., Taş, İ. H., Yılgın, M., Atamanalp, M., Topal, A., Kocaman, E. M., & Yanık, T. (2019a). Neurophysiological responses in the brain tissues of rainbow trout (Oncorhynchus mykiss) treated with bio-pesticide. Drug and Chemical Toxicology, 42(2), 203–209. https://doi.org/10.1080/01480545.2018.1 526180 PMID:30449198.

Ali, D., Nagpure, N. S., Kumar, S., Kumar, R., Kushwaha, B., & Lakra, W. S. (2009). Assessment of genotoxic and mutagenic effects of chlorpyrifos in freshwater fish Channa punctatus (Bloch) using micronucleus assay and alkaline singlecell gel electrophoresis. Food and Chemical Toxicology, 47(3), 650–656. https://doi.org/10.1016/j.fct.2008.12.021 PMID:19141310.

Almeida, J. R., Oliveira, C., Gravato, C., & Guilhermino, L. (2010). Linking behavioural alterations with biomarkers responses in the European seabass Dicentrarchus labrax L. exposed to the organophosphate pesticide fenitrothion. Ecotoxicology (London, England), 19(8), 1369–1381. https:// doi.org/10.1007/s10646-010-0523-y PMID:20686920.

Atamanalp, M., Parlak, V., Özgeriş, F. B., Yeltekin, A. C., Ucar, A., Keleş, M. S., & Alak, G. (2021). Treatment of oxidative stress, apoptosis, and DNA injury with N-acetylcysteine at simulative pesticide toxicity in fish. Toxicology Mechanisms and Methods, 31(3), 224–234. https://doi.org/10.1080/153 76516.2021.1871794 PMID:33412942.

Beutler, E. (1971). Red cell metabolism manual of biochemical methods. Academic Press. Bhattacharjee, R., & Sil, P. C. (2006). The protein fraction of Phyllanthus niruri plays a protective role against acetaminophen induced hepatic disorder via its antioxidant properties. Phytotherapy Research, 20(7), 595– 601. https://doi.org/10.1002/ptr.1933 PMID:16718736.

Bhattacharya, S. (1993). Target and non-target effects of anticholinesterase pesticides in fish. The Science of the Total Environment, 134(S2), 859–866. https://doi.org/10.1016/ S0048-9697(05)80092-0.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254. https://doi. org/10.1016/0003-2697(76)90527-3 PMID:942051.

Carlberg, I., & Mannervik, B. (1975). Purification and characterization of the flavoenzyme glutathione reductase from rat liver. The Journal of Biological Chemistry, 250(14), 5475–5480. https://doi.org/10.1016/S0021- 9258(19)41206-4 PMID:237922.

Cazenave, J., Bistoni, M. L., Pesce, S. F., & Wunderlin, D. A. (2006). Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus experimentally exposed to microcystin-RR. Aquatic Toxicology (Amsterdam, Netherlands), 76(1), 1–12. https://doi.org/10.1016/j.aquatox.2005.08.011 PMID:16263184.

Da Cuña, R. H., Rey Vázquez, G., Piol, M. N., Guerrero, N. V., Maggese, M. C., & Lo Nostro, F. L. (2011). Assessment of the acute toxicity of the organochlorine pesticide endosulfan in Cichlasoma dimerus (Teleostei, Perciformes). Ecotoxicology and Environmental Safety, 74(4), 1065– 1073. https://doi.org/10.1016/j.ecoenv.2011.02.002 PMID:21377734.

Deb, N., & Das, S. (2013). Chlorpyrifos toxicity in fish: A review. Current World Environment, 8(1), 77–84. https://doi. org/10.12944/CWE.8.1.17.

Donepudi, M., & Grütter, M. G. (2002). Structure and zymogen activation of caspases. Biophysical Chemistry, 101-102, 145–153. https://doi.org/10.1016/S0301-4622(02)00151-5 PMID:12487996.

Ellman, G. L., Courtney, K. D., Andres, V., Jr., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145- 9 PMID:13726518.

Fırat, Ö., & Aytekin, T. (2018). Effect of neonicotinoid insecticide thiamethoxam on oxidative stress parameters in Oreochromis niloticus. Journal of Balikesir University Institute of Science and Technology, 20(2), 224–234. https:// doi.org/10.25092/baunfbed.427757.

Gholami-Seyedkolaei, S. J., Mirvaghefi, A., Farahmand, H., & Kosari, A. A. (2013). Effect of a glyphosate-based herbicide in Cyprinus carpio: Assessment of acetylcholinesterase activity, hematological responses and serum biochemical parameters. Ecotoxicology and Environmental Safety, 98, 135–141. https://doi.org/10.1016/j.ecoenv.2013.09.011 PMID:24075644.

Glusczak, L., dos Santos Miron, D., Crestani, M., Braga da Fonseca, M., de Araújo Pedron, F., Duarte, M. F., & Vieira, V. L. (2006). Effect of glyphosate herbicide on acetylcholinesterase activity and metabolic and hematological parameters in piava (Leporinus obtusidens). Ecotoxicology and Environmental Safety, 65(2), 237– 241. https://doi.org/10.1016/j.ecoenv.2005.07.017 PMID:16174533.

Golovanova, I. L., Kuz’mina, V. V., Gobzhelian, T. E., Pavlov, D. F., & Chuiko, G. M. (1999). In vitro effects of cadmium and DDVP (dichlorvos) on intestinal carbohydrase and protease activities in freshwater teleosts. Comparative Biochemistry and Physiology. Part C, Pharmacology, Toxicology & Endocrinology, 122(1), 21–25. https://doi. org/10.1016/S0742-8413(98)10063-4 PMID:10190024.

Gutteridge, J. M. (1995). Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clinical Chemistry, 41(12 Pt 2), 1819–1828. https://doi.org/10.1093/clinchem/41.12.1819 PMID:7497639.

Hengartner, M. O. (2000). The biochemistry of apoptosis. Nature, 407(6805), 770–776. https://doi.org/10.1038/35037710 PMID:11048727.

İspir, U., Kirici, M., Yonar, M. E., & Mişe Yonar, S. (2017). Response of antioxidant system to formalin in the whole body of rainbow trout, Oncorhynchus mykiss. Cellular and Molecular Biology, 63(1), 13–16. https://doi.org/10.14715/ cmb/2017.63.1.3 PMID:28234619.

Jalili-Nik, M., Sadeghi, M. M., Mohtashami, E., Mollazadeh, H., Afshari, A. R., & Sahebkar, A. (2020). Zerumbone promotes cytotoxicity in human malignant glioblastoma cells through reactive oxygen species (ROS) generation. Oxidative Medicine and Cellular Longevity, 2020, 3237983. Advance online publication. https://doi. org/10.1155/2020/3237983 PMID:32454937.

Jurma, O. P., Hom, D. G., & Andersen, J. K. (1997). Decreased glutathione results in calcium-mediated cell death in PC12. Free Radical Biology & Medicine, 23(7), 1055–1066. https:// doi.org/10.1016/S0891-5849(97)00134-2 PMID:9358249.

Kavitha, P., & Rao, J. V. (2008). Toxic effects of chlorpyrifos on antioxidant enzymes and target enzyme acetylcholinesterase interaction in mosquito fish, Gambusia affinis. Environmental Toxicology and Pharmacology, 26(2), 192–198. https://doi.org/10.1016/j. etap.2008.03.010 PMID:21783910.

Kirby, M. F., Morris, S., Hurst, M., Kirby, S. J., Neall, P., Tylor, T., & Fagg, A. (2000). The use of cholinesterase activity in flounder (Platichthys flesus) muscle tissue as a biomarker of neurotoxic contamination in UK estuaries. Marine Pollution Bulletin, 40(9), 780–791. https://doi.org/10.1016/ S0025-326X(00)00069-2.

Kirici, M., Kirici, M., Atamanalp, M., & Beydemir, Ş. (2021). Purification of glutathione reductase from some tissues of Capoeta umbla and the inhibitory effects of some metal ions on enzyme activity. Marine Science and Technology Bulletin, 10(2), 193–200. https://doi.org/10.33714/ masteb.769454.

Kirici, M., Turk, C., Caglayan, C., & Kirici, M. (2017). Toxic effects of copper sulphate pentahydrate on antioxidant enzyme activities and lipid peroxidation of freshwater fish Capoeta umbla (Heckel, 1843) tissues. Applied Ecology and Environmental Research, 15(3), 1685–1696. https://doi. org/10.15666/aeer/1503_16851696.

Kokushi, E., Uno, S., Pal, S., & Koyama, J. (2015). Effects of chlorpyrifos on the metabolome of the freshwater carp, Cyprinus carpio. Environmental Toxicology, 30(3), 253–260. https://doi.org/10.1002/tox.21903 PMID:23997021.

Lazarevic-Pasti, T., Leskovac, A., Momic, T., Petrovic, S., & Vasic, V. (2017). Modulators of acetylcholinesterase activity: From Alzheimer’s disease to anti-cancer drugs. Current Medicinal Chemistry, 24(30), 3283–3309. https://doi.org/10 .2174/0929867324666170705123509 PMID:28685687.

Mishra, A., & Devi, Y. (2014). Histopathological alterations in the brain (optic tectum) of the fresh water teleost Channa punctatus in response to acute and subchronic exposure to the pesticide Chlorpyrifos. Acta Histochemica, 116(1), 176–181. https://doi.org/10.1016/j.acthis.2013.07.001.PMID:23948667.

Modesto, K. A., & Martinez, C. B. (2010). Effects of Roundup Transorb on fish: Hematology, antioxidant defenses and acetylcholinesterase activity. Chemosphere, 81(6), 781– 787. https://doi.org/10.1016/j.chemosphere.2010.07.005 PMID:20684975.

Monteiro, S. M., dos Santos, N. M., Calejo, M., FontaínhasFernandes, A., & Sousa, M. (2009). Copper toxicity in gills of the teleost fish, Oreochromis niloticus: Effects in apoptosis induction and cell proliferation. Aquatic Toxicology (Amsterdam, Netherlands), 94(3), 219–228. https://doi. org/10.1016/j.aquatox.2009.07.008 PMID:19656581.

Oliva, M., González de Canales, M. L., Gravato, C., Guilhermino, L., & Perales, J. A. (2010). Biochemical effects and polycyclic aromatic hydrocarbons (PAHs) in senegal sole (Solea senegalensis) from a Huelva estuary (SW Spain). Ecotoxicology and Environmental Safety, 73(8), 1842–1851. https://doi.org/10.1016/j.ecoenv.2010.08.035 PMID:20843549.

Parlak, V. (2018). Evaluation of apoptosis, oxidative stress responses, AChE activity and body malformations in zebrafish (Danio rerio) embryos exposed to deltamethrin. Chemosphere, 207, 397–403. https://doi.org/10.1016/j. chemosphere.2018.05.112 PMID:29803889.

Placer, Z. A., Cushman, L. L., & Johnson, B. C. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical Biochemistry, 16(2), 359–364. https://doi.org/10.1016/0003-2697(66)90167-9 PMID:6007581.

Qu, C., Yang, W., Xu, Q., Sun, J., Lu, M., Wang, Y., Liu, C., Wang, W., Wang, L., & Song, L. (2018). A novel effector caspase (Caspase-3/7-1) involved in the regulation of immune homeostasis in Chinese mitten crab Eriocheir sinensis. Fish & Shellfish Immunology, 83, 76–83. https://doi.org/10.1016/j. fsi.2018.09.013 PMID:30195917.

Rosenfeld, C., Kousba, A., & Sultatos, L. G. (2001). Interactions of rat brain acetylcholinesterase with the detergent Triton X-100 and the organophosphate paraoxon. Toxicological Sciences, 63(2), 208–213. https://doi.org/10.1093/ toxsci/63.2.208 PMID:11568364.

Schmidel, A. J., Assmann, K. L., Werlang, C. C., Bertoncello, K. T., Francescon, F., Rambo, C. L., Beltrame, G. M., Calegari, D., Batista, C. B., Blaser, R. E., Roman Júnior, W. A., Conterato, G. M., Piato, A. L., Zanatta, L., Magro, J. D., & Rosemberg, D. B. (2014). Subchronic atrazine exposure changes defensive behaviour profile and disrupts brain acetylcholinesterase activity of zebrafish. Neurotoxicology and Teratology, 44, 62–69. https://doi.org/10.1016/j.ntt.2014.05.006 PMID:24893294.

Shi, Y., Wang, F., He, J., Yadav, S., & Wang, H. (2010). Titanium dioxide nanoparticles cause apoptosis in BEAS-2B cells through the caspase 8/t-Bid-independent mitochondrial pathway. Toxicology Letters, 196(1), 21–27. https://doi. org/10.1016/j.toxlet.2010.03.014 PMID:20362650.

Song, Y., Zhu, L. S., Wang, J., Wang, J. H., Liu, W., & Xie, H. (2009). DNA damage and effects on antioxidative enzymes in earthworm (Eiseniafoetida) induced by atrazine. Soil Biology & Biochemistry, 41(5), 905–909. https://doi. org/10.1016/j.soilbio.2008.09.009.

Soukhtanloo, M., Mohtashami, E., Maghrouni, A., Mollazadeh, H., Mousavi, S. H., Roshan, M. K., Tabatabaeizadeh, S. A., Hosseini, A., Vahedi, M. M., Jalili-Nik, M., & Afshari, A. R. (2020). Natural products as promising targets in glioblastoma multiforme: A focus on NF-κB signaling pathway. Pharmacological Reports, 72(2), 285–295. https:// doi.org/10.1007/s43440-020-00081-7 PMID:32152926.

Stara, A., Machova, J., & Velisek, J. (2012). Effect of chronic exposure to simazine on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.). Environmental Toxicology and Pharmacology, 33(2), 334–343. https://doi.org/10.1016/j.etap.2011.12.019 PMID:22301164.

Sun, Y., Oberley, L. W., & Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34(3), 497–500. https://doi.org/10.1093/clinchem/34.3.497 PMID:3349599.

Tabassum, H., Afjal, M. A., Khan, J., Raisuddin, S., & Parvez, S. (2015). Neurotoxicological assessment of pendimethalin in freshwater fish Channa punctata Bloch. Ecological Indicators, 58, 411–417. https://doi.org/10.1016/j. ecolind.2015.06.008.

Teng, M., Zhou, Y., Song, M., Dong, K., Chen, X., Wang, C., Bi, S., & Zhu, W. (2019). Chronic toxic effects of Flutolanil on the liver of Zebrafish (Danio rerio). Chemical Research in Toxicology, 32(6), 995–1001. https://doi.org/10.1021/acs. chemrestox.8b00300 PMID:30942079.

Tomatır, A. G. (2003). Apoptosis: Programmed cell death. Turkiye Klinikleri Journal of Medical Sciences, 23(6), 499–508.

Topal, A., Alak, G., Altun, S., Erol, H. S., & Atamanalp, M. (2017b). Evaluation of 8-hydroxy-2-deoxyguanosine and NFkB activation, oxidative stress response, acetylcholinesterase activity, and histopathological changes in rainbow trout brain exposed to linuron. Environmental Toxicology and Pharmacology, 49, 14–20. https://doi.org/10.1016/j. etap.2016.11.009 PMID:27886567.

Topal, A., Alak, G., Ozkaraca, M., Yeltekin, A. C., Comaklı, S., Acıl, G., Kokturk, M., & Atamanalp, M. (2017a). Neurotoxic responses in brain tissues of rainbow trout exposed to imidacloprid pesticide: Assessment of 8-hydroxy2-deoxyguanosine activity, oxidative stress and acetylcholinesterase activity. Chemosphere, 175, 186–191. https://doi.org/10.1016/j.chemosphere.2017.02.047 PMID:28219821.

Topal, A., Atamanalp, M., Oruç, E., Halıcı, M. B., Şişecioğlu, M., Erol, H. S., Gergit, A., & Yılmaz, B. (2015). Neurotoxic effects of nickel chloride in the rainbow trout brain: Assessment of c-Fos activity, antioxidant responses, acetylcholinesterase activity, and histopathological changes. Fish Physiology and Biochemistry, 41(3), 625–634. https://doi.org/10.1007/ s10695-015-0033-1 PMID:25666867.

Topal, A., Atamanalp, M., Oruç, E., Kırıcı, M., & Kocaman, E. M. (2014). Apoptotic effects and glucose-6-phosphate dehydrogenase responses in liver and gill tissues of rainbow trout treated with chlorpyrifos. Tissue & Cell, 46(6), 490–496. https://doi.org/10.1016/j.tice.2014.09.001 PMID:25438950.

Toroser, D., Orr, W. C., & Sohal, R. S. (2007). Carbonylation of mitochondrial proteins in Drosophila melanogaster during aging. Biochemical and Biophysical Research Communications, 363(2), 418–424. https://doi. org/10.1016/j.bbrc.2007.08.193 PMID:17884014.

Uçar, A., Parlak, V., Alak, G., Atamanalp, M., & Şişecioğlu, M. (2020a). Toxicity mechanisms of chlorpyrifos on tissues of rainbow trout and brown trout: Evaluation of oxidative stress responses and acetylcholinesterase enzymes activity. Iranian Journal of Fisheries Science, 19(4), 2106– 2117. https://doi.org/10.22092/ijfs.2019.119763.

Uçar, A., Parlak, V., Özgeriş, F. B., Yeltekin, A. C., Alak, G., & Atamanalp, M. (2020b). Determination of Fipronil toxicity by different biomarkers in gill and liver tissue of rainbow trout (Oncorhynchus mykiss). In Vitro Cellular & Developmental Biology. Animal, 56, 543–549. https://doi. org/10.1007/s11626-020-00480-3 PMID:32860191.

Ullah, S., Li, Z., Hasan, Z., Khan, S. U., & Fahad, S. (2018). Malathion induced oxidative stress leads to histopathological and biochemical toxicity in the liver of rohu (Labeo rohita, Hamilton) at acute concentration. Ecotoxicology and Environmental Safety, 161, 270–280. https://doi. org/10.1016/j.ecoenv.2018.06.002 PMID:29886314.

Vasylkiv, O. Y., Kubrak, O. I., Storey, K. B., & Lushchak, V. I. (2011). Catalase activity as a potential vital biomarker of fish intoxication by the herbicide aminotriazole. Pesticide Biochemistry and Physiology, 101(1), 1–5. https://doi. org/10.1016/j.pestbp.2011.05.005.

Xing, H., Li, S., Wang, Z., Gao, X., Xu, S., & Wang, X. (2012b). Oxidative stress response and histopathological changes due to atrazine and chlorpyrifos exposure in common carp. Pesticide Biochemistry and Physiology, 103(1), 74–80. https://doi.org/10.1016/j.pestbp.2012.03.007.

Xing, H., Li, S., Wang, Z., Gao, X., Xu, S., & Wang, X. (2012a). Histopathological changes and antioxidant response in brain and kidney of common carp exposed to atrazine and chlorpyrifos. Chemosphere, 88(4), 377–383. https://doi. org/10.1016/j.chemosphere.2012.02.049 PMID:22436588.

Xing, H., Wang, J., Li, J., Fan, Z., Wang, M., & Xu, S. (2010). Effects of atrazine and chlorpyrifos on acetylcholinesterase and Carboxylesterase in brain and muscle of common carp. Environmental Toxicology and Pharmacology, 30(1), 26–30. https://doi.org/10.1016/j.etap.2010.03.009 PMID:21787625.

Xing, H., Wu, H., Sun, G., Zhang, Z., Xu, S., & Li, S. (2013). Alterations in activity and mRNA expression of acetylcholinesterase in the liver, kidney and gill of common carp exposed to atrazine and chlorpyrifos. Environmental Toxicology and Pharmacology, 35(1), 47–54. https://doi.org/10.1016/j. etap.2012.11.004 PMID:23237783.

Xu, G. W., Yao, Q. H., Weng, Q. F., Su, B. L., Zhang, X., & Xiong, J. H. (2004). Study of urinary 8-hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in diabetic nephropathy patients. Journal of Pharmaceutical and Biomedical Analysis, 36(1), 101–104. https://doi. org/10.1016/j.jpba.2004.04.016 PMID:15351053.

Yonar, M. E., Ispir, U., Mişe Yonar, S., & Kirici, M. (2016). Effect of copper sulphate on the antioxidant parameters in the rainbow trout fry, Oncorhynchus mykiss. Cellular and Molecular Biology, 62(6), 55–58. PMID:27262803.

Yonar, S. M., Sakin, F., Yonar, M. E., Ispir, U., & Kırıcı, M. (2011). Oxidative stress biomarkers of exposure to deltamethrin in rainbow trout fry (Oncorhynchus mykiss). Fresenius Environmental Bulletin, 20(8), 1931–1935.

Zeinali, T., Karimi, L., Hosseinahli, N., Shanehbandi, D., Mansoori, B., Mohammadi, A., Hajiasgharzadeh, K., Babaloo, Z., Majidi-Zolbanin, J., & Baradaran, B. (2020). Overexpression of miRNA-145 induces apoptosis and prevents proliferation and migration of MKN-45 gastric cancer cells. EXCLI Journal, 19, 1446–1458. https://doi. org/10.17179/excli2020-2777 PMID:33250681.

Zhang, J. F., Liu, H., Sun, Y. Y., Wang, X. R., Wu, J. C., & Xue, Y. Q. (2005). Responses of the antioxidant defenses of the Goldfish Carassius auratus, exposed to 2,4-dichlorophenol. Environmental Toxicology and Pharmacology, 19(1), 185–190. https://doi.org/10.1016/j.etap.2004.07.001 PMID:21783475.

Downloads

Published

2022-06-30

How to Cite

Kirici, M. (2022). Assessment of 8-hydroxy-2-deoxyguanosine activity, apoptosis, acetylcholinesterase and antioxidant enzyme activity in Capoeta umbla brain exposed to chlorpyrifos. Oceanological and Hydrobiological Studies, 51(2), 167–177. https://doi.org/10.26881/oandhs-2022.2.05

Issue

Section

Articles

Most read articles by the same author(s)