Assessment of heavy metal pollution in seawater, benthic flora and fauna and their ability to survive under stressors along the northern Red Sea, Egypt

Authors

  • Ahmed Salah-Tantawy National Tsing Hua University
  • Aldoushy Mahdy Al-Azhar University
  • Mahmoud A. Dar National Institute of Oceanography and Fisheries
  • Shuh-Sen Young National Tsing Hua University
  • Abdelbaset M. A. Abdelreheem Al-Azhar University

DOI:

https://doi.org/10.26881/oahs-2022.4.05

Keywords:

Red Sea, heavy metals, seawater pollution, bioaccumulation, marine fauna, flora

Abstract

The purpose of this study was to assess the north coasts of the Egyptian Red Sea, including Ras Gharieb, Hurghada, Safaga and Qusier, by evaluating the heavy metal pollution in seawater and benthic flora and fauna in the winter and summer of 2016. The concentrations of heavy metals (Fe, Mn, Zn, Cu, Ni, Cd and Pb) were analysed with an atomic absorption spectrophotometer. The results revealed that the Fe levels in the seawater ranged from 7.86 and 27.95 µg l-1, while the Zn concentrations fell between 1.83 and 5.63 µg l-1. In contrast, the recorded values of Mn, Cu, Ni, Pb and Cd in the seawater were minimal at the study sites. Regarding the biota samples, Porifera species were more adaptable than others to an accumulation of most metals in their tissues. Furthermore, seaweeds and seagrasses demonstrated remarkable adaptation in highly polluted regions, especially those with high turbidity, landfilling, sedimentation and high eutrophication rates – much more than the benthic fauna. Our research highlights the critical need for strict regulation of metal emissions in these coastal regions.

Downloads

Download data is not yet available.

References

Abd El-Wahab, M., Dar, M., & Mohammad, T. (2005). Sediments, coral reefs and seawater interactions in some coastal lagoons, Red Sea, Egypt. Egyptian Journal of Aquatic Research, 31(Special Issue), 69–85.

Abdel-Aziz, T., & Dar, M. A. (2010). Ability of corals to accumulate heavy metals, Northern Red Sea, Egypt. Environmental Earth Sciences, 59(7), 1525–1534. https://doi.org/10.1007/s12665-009-0138-x

Abouhend, A. S., & El-Moselhy, K. M. (2015). Spatial and seasonal variations of heavy metals in water and sediments at the northern Red Sea coast. American Journal of Water Resources, 3(3), 73–85.

Al-Rousan, S. A., Al-Shloul, R. N., Al-Horani, F. A., & Abu-Hilal, A. H. (2007). Heavy metal contents in growth bands of Porites corals: Record of anthropogenic and human developments from the Jordanian Gulf of Aqaba. Marine Pollution Bulletin, 54(12), 1912–1922. https://doi.org/10.1016/j.marpolbul.2007.08.014 PMID:17961605

Al-Shwafi, N. A., & Rushdi, A. I. (2008). Heavy metal concentrations in marine green, brown, and red seaweeds from coastal waters of Yemen, the Gulf of Aden. Environmental Geology (Berlin), 55(3), 653–660. https://doi.org/10.1007/s00254-007-1015-0

Al-Wesabi, E. O., Zinadah, O. A. A., Zari, T. A., & Al-Hasawi, Z. M. (2015). Comparative assessment of some heavy metals in water and sediment from the Red Sea coast, Jeddah, Saudi Arabia. International Journal of Current Microbiology and Applied Sciences, 4(8), 840–855.

Ali, A.-A., Hamed, M. A., & El-Azim, A. (2011). Heavy metals distribution in the coral reef ecosystems of the Northern Red Sea. Helgoland Marine Research, 65(1), 67–80. https://doi.org/10.1007/s10152-010-0202-7

Amado Filho, G. M., Creed, J. C., Andrade, L. R., & Pfeiffer, W. C. (2004). Metal accumulation by Halodule wrightii populations. Aquatic Botany, 80(4), 241–251. https://doi.org/10.1016/j.aquabot.2004.07.011

ANZECC. (1994). National Water Quality Management Strategy: Australian Water Quality Guidelines for Fresh and Marine Waters. November 1992. Australian and New Zealand Environment & Conservation Council.

ARMCANZ. (2000). Australian water quality guidelines for fresh and marine waters. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand.

Bazzi, A. (2014). Heavy metals in seawater, sediments and marine organisms in the Gulf of Chabahar, Oman Sea. Journal of Oceanography and Marine Science, 5(3), 20–29.https://doi.org/10.5897/JOMS2014.0110

Belal, A. A. M., El-Sawy, M. A., & Dar, M. A. (2016). The effect of water quality on the distribution of macro-benthic fauna in Western Lagoon and Timsah Lake, Egypt. I. Egyptian Journal of Aquatic Research, 42(4), 437–448. https://doi.org/10.1016/j.ejar.2016.12.003

Berthet, B., Mouneyrac, C., Pérez, T., & Amiard-Triquet, C. (2005). Metallothionein concentration in sponges (Spongia officinalis) as a biomarker of metal contamination. Comparative Biochemistry and Physiology. Toxicology & Pharmacology : CBP, 141(3), 306–313. https://doi.org/10.1016/j.cca.2005.07.008 PMID:16098817

Boniforti, R., Ferraroli, R., Frigieri, P., Heltai, D., & Queirazza, G. (1984). Intercomparison of five methods for the determination of trace metals in seawater. Analytica Chimica Acta, 162, 33–46. https://doi.org/10.1016/S0003-2670(00)84225-7

Bosch, A. C., O’Neill, B., Sigge, G. O., Kerwath, S. E., & Hoffman, L. C. (2016). Heavy metals in marine fish meat and consumer health: A review. Journal of the Science of Food and Agriculture, 96(1), 32–48. https://doi.org/10.1002/jsfa.7360 PMID:26238481

Brewer, P., Spencer, D., & Smith, C. (1969). Determination of trace metals in seawater by atomic absorption spectrophotometry. In Atomic absorption spectroscopy. ASTM International. https://doi.org/10.1520/STP47272S

Brown, B., & Holley, M. (1982). Metal levels associated with tin dredging and smelting and their effect upon intertidal reef flats at Ko Phuket, Thailand. Coral Reefs, 1(2), 131–137. https://doi.org/10.1007/BF00301695

Caccia, V. G., Millero, F. J., & Palanques, A. (2003). The distribution of trace metals in Florida Bay sediments. Marine Pollution Bulletin, 46(11), 1420–1433. https://doi.org/10.1016/S0025-326X(03)00288-1 PMID:14607540

Campanella, L., Conti, M. E., Cubadda, F., & Sucapane, C. (2001). Trace metals in seagrass, algae and molluscs from an uncontaminated area in the Mediterranean. Environmental Pollution, 111(1), 117–126. https://doi.org/10.1016/S0269-7491(99)00327-9 PMID:11202705

Cebrian, E., Uriz, M. J., & Turon, X. (2007). Sponges as biomonitors of heavy metals in spatial and temporal surveys in northwestern mediterranean: Multispecies comparison. Environmental Toxicology and Chemistry, 26(11), 2430–2439. https://doi.org/10.1897/07-292.1 PMID:17941749

Chester, R., Lin, F. J., & Basaham, A. S. (1994). Trace metal solid state speciation changes associated with the down-column fluxes of oceanic particulates. Journal of the Geological Society, 151(2), 351–360. https://doi.org/10.1144/gsjgs.151.2.0351

Conti, M. E. (2002). Il monitoraggio biologico della qualità ambientale.

Conti, M. E., & Cecchetti, G. (2003). A biomonitoring study: Trace metals in algae and molluscs from Tyrrhenian coastal areas. Environmental Research, 93(1), 99–112. https://doi.org/10.1016/S0013-9351(03)00012-4 PMID:12865053

Dadolahi-Sohrab, A., Nikvarz, A., Nabavi, S., Safahyeh, A., & Ketal-Mohseni, M. (2011). Environmental monitoring of heavy metals in seaweed and associated sediment from the Strait of Hormuz. IR Iran. World J. Fish Mar. Sci, 3, 576–589.

Dar, M., Ali, A., & Murad, F. (2008). Response of scleractinian corals to the natural and anthropogenic heavy metal stresses in the northern red sea and gulfs of Suez and Aqaba northern red sea and Aqaba.

Dar, M. A. (2004). Heavy metals variability and the bioaccumulation mechanism in the recent corals, Hurghada, Red Sea, Egypt. Sedimentology of Egypt, 12, 119–129.

Dar, M. A., & Abd El Wahab, M. (2005). The coastal alterations due to the artificial lagoons, Red Sea (Case Study). Egyptian Journal of Aquatic Research, 31, 57–68.

Dar, M. A., Belal, A. A., & Madkour, A. G. (2018). The differentia abilities of some molluscs to accumulate heavy metals within their shells in the Timsah and the Great Bitter lakes, Suez Canal, Egypt. Egyptian Journal of Aquatic Research, 44(4), 291–298. https://doi.org/10.1016/j.ejar.2018.11.008

Dar, M. A., Fouda, F. A., El-Nagar, A. M., & Nasr, H. M. (2016). The effects of land-based activities on the near-shore environment of the Red Sea, Egypt. Environmental Earth Sciences, 75(3), 1–17. https://doi.org/10.1007/s12665-015-4961-y

Dar, M. A., & Mohammed, T. A. (2009). Seasonal variations in the skeletogensis process in some branching corals of the Red Sea. Thalassas, 25(1), 31–44.

El-Metwally, M. (2015). Monitoring of heavy metals pollution in the Egyptian Red Sea coast and response of marine organisms Ph. D. Thesis, Mansoura University, 275].

El-Metwally, M. E., Madkour, A. G., Fouad, R. R., Mohamedein, L. I., Eldine, H. A. N., Dar, M. A., & El-Moselhy, K. M. (2017). Assessment the leachable heavy metals and ecological risk in the surface sediments inside the Red Sea ports of Egypt. International Journal of Marine Science, 7. https://doi.org/10.5376/ijms.2017.07.0023

el-Sikaily, A., Khaled, A., & el-Nemr, A. (2004). Heavy metals monitoring using bivalves from Mediterranean Sea and Red Sea. Environmental Monitoring and Assessment, 98(1-3), 41–58. https://doi.org/10.1023/B:EMAS.0000038178.98985.5d PMID:15473528

El Shaffai, A. (2016). Field guide to seagrasses of the Red Sea. International Union for the Conservation of Nature, eds A. Rouphael, and A. Abdulla (Gland: IUCN and Courbevoie: Total Foundation), 56.

Fairbanks, R., Evans, M., Rubenstone, J., Mortlock, R., Broad, K., Moore, M., & Charles, C. (1997). Evaluating climate indices and their geochemical proxies measured in corals. Coral Reefs, 16(1), S93–S100. https://doi.org/10.1007/s003380050245

Fallon, S. J., White, J. C., & McCulloch, M. T. (2002). Porites corals as recorders of mining and environmental impacts: Misima Island, Papua New Guinea. Geochimica et Cosmochimica Acta, 66(1), 45–62. https://doi.org/10.1016/S0016-7037(01)00715-3

Ferrat, L., Pergent-Martini, C., & Roméo, M. (2003). Assessment of the use of biomarkers in aquatic plants for the evaluation of environmental quality: Application to seagrasses. Aquatic Toxicology (Amsterdam, Netherlands), 65(2), 187–204. https://doi.org/10.1016/S0166-445X(03)00133-4 PMID:12946618

Ferrier-Pagès, C., Schoelzke, V., Jaubert, J., Muscatine, L., & Hoegh-Guldberg, O. (2001). Response of a scleractinian coral, Stylophora pistillata, to iron and nitrate enrichment. Journal of Experimental Marine Biology and Ecology, 259(2), 249–261. https://doi.org/10.1016/S0022-0981(01)00241-6 PMID:11343715

Hamed, M. A., & Emara, A. M. (2006). Marine molluscs as biomonitors for heavy metal levels in the Gulf of Suez, Red Sea. Journal of Marine Systems, 60(3-4), 220–234. https://doi.org/10.1016/j.jmarsys.2005.09.007

Hatje, V., Payne, T. E., Hill, D. M., McOrist, G., Birch, G. F., & Szymczak, R. (2003). Kinetics of trace element uptake and release by particles in estuarine waters: Effects of pH, salinity, and particle loading. Environment International, 29(5), 619–629. https://doi.org/10.1016/S0160-4120(03)00049-7 PMID:12742405

Jayaraju, N., Sundara Raja Reddy, B., & Reddy, K. (2009). Heavy metal pollution in reef corals of Tuticorin Coast, Southeast Coast of India. Soil & Sediment Contamination, 18(4), 445–454. https://doi.org/10.1080/15320380902962361

Jha, B., Reddy, C., Thakur, M. C., & Rao, M. U. (2009). Seaweeds of India: the diversity and distribution of seaweeds of Gujarat coast (Vol. 3). Springer Science & Business Media. https://doi.org/10.1007/978-90-481-2488-6

Johnston, E. L., & Clark, G. F. (2007). Recipient environment more important than community composition in determining the success of an experimental sponge transplant. Restoration Ecology, 15(4), 638–651. https://doi.org/10.1111/j.1526-100X.2007.00276.x

Kannan, R., Ganesan, M., Govindasamy, C., Rajendran, K., Sampathkumar, P., & Kannan, L. (1992). Tissue concentration of heavy metals in seagrasses of the Palk Bay, Bay of Bengal. International Journal of Ecology and Environmental Sciences, 18, 29–34.

Khaled, A., Hessein, A., Abdel-Halim, A. M., & Morsy, F. M. (2014). Distribution of heavy metals in seaweeds collected along Marsa-Matrouh beaches, Egyptian Mediterranean Sea. Egyptian Journal of Aquatic Research, 40(4), 363–371. https://doi.org/10.1016/j.ejar.2014.11.007

Klumpp, D., & Van der Valk, A. (1984). Nutritional quality of seagrasses (Posidonia australis and Heterozostera tasmanica): Comparison between species and stages of decomposition. Marine Biology Letters, 5(2), 67–83.

Li, H., Lin, L., Ye, S., Li, H., & Fan, J. (2017). Assessment of nutrient and heavy metal contamination in the seawater and sediment of Yalujiang Estuary. Marine Pollution Bulletin, 117(1-2), 499–506. https://doi.org/10.1016/j.marpolbul.2017.01.069 PMID:28185654

Li, X., Chi, W., Tian, H., Zhang, Y., & Zhu, Z. (2019). Probabilistic ecological risk assessment of heavy metals in western Laizhou Bay, Shandong Province, China. PLoS One, 14(3), e0213011. https://doi.org/10.1371/journal.pone.0213011 PMID:30870455

Liu, R., Jiang, W., Li, F., Pan, Y., Wang, C., & Tian, H. (2021). Occurrence, partition, and risk of seven heavy metals in sediments, seawater, and organisms from the eastern sea area of Shandong Peninsula, Yellow Sea, China. Journal of Environmental Management, 279, 111771. https://doi.org/10.1016/j.jenvman.2020.111771 PMID:33307318

Maanan, M. (2008). Heavy metal concentrations in marine molluscs from the Moroccan coastal region. Environmental Pollution, 153(1), 176–183. https://doi.org/10.1016/j.envpol.2007.07.024 PMID:17822817

Macfadyen, L. (1936). Alcyonaria (Stolonifera, Alcyonacea, and Gorgonacea). Sci. Rep. Gr.

Madkour, H. A. (2013). Impacts of human activities and natural inputs on heavy metal contents of many coral reef environments along the Egyptian Red Sea coast. Arabian Journal of Geosciences, 6(6), 1739–1752. https://doi.org/10.1007/s12517-011-0482-5

Madkour, H. A., & Dar, M. A. (2007). The anthropogenic effluents of the human activities on the Red Sea coast at Hurghada harbour (case study).

Measures, C., & Vink, S. (1999). Seasonal variations in the distribution of Fe and Al in the surface waters of the Arabian Sea. Deep-sea Research. Part II, Topical Studies in Oceanography, 46(8-9), 1597–1622. https://doi.org/10.1016/S0967-0645(99)00037-5

Neuberger-Cywiak, L., Achituv, Y., & Garcia, E. (2003). Effects of zinc and cadmium on the burrowing behavior, LC50, and LT50 on Donax trunculus Linnaeus (Bivalvia-Donacidae). Bulletin of environmental contamination and toxicology, 70(4), 0713-0722.

Nour, H. E., & El-Sorogy, A. S. (2020). Heavy metals contamination in seawater, sediments and seashells of the Gulf of Suez, Egypt. Environmental Earth Sciences, 79(11), 1–12. https://doi.org/10.1007/s12665-020-08999-0

Parus, A., & Karbowska, B. (2020). Marine algae as natural indicator of environmental cleanliness. Water, Air, and Soil Pollution, 231(3), 1–8. https://doi.org/10.1007/s11270-020-4434-0

Qari, R., & Siddiqui, S. A. (2010). A comparative study of heavy metal concentrations in red seaweeds from different coastal areas of Karachi. Arabian Sea.

Rajeshkumar, S., & Li, X. (2018). Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicology Reports, 5, 288–295. https://doi.org/10.1016/j.toxrep.2018.01.007 PMID:29511642

Riley, J. P., & Chester, R. (1971). Introduction to marine chemistry.

Ryan, S., McLoughlin, P., & O’Donovan, O. (2012). A comprehensive study of metal distribution in three main classes of seaweed. Environmental Pollution, 167, 171–177. https://doi.org/10.1016/j.envpol.2012.04.006 PMID:22575098

Salah-Tantawy, A., Chang, C.-S.G., Liu, M.-Y., and Young, S.-S. (2022a). Exploring the diversity and structural response of sediment-associated microbiota communities to environmental pollution at the siangshan wetland in Taiwan using environmental DNA metagenomic approach. Frontiers in Marine Science 9, 990428. doi: 10.3389/fmars.2022.990428

Salah-Tantawy, A., Mahdy, A., Dar, M.A., Young, S.-S., and Abdelreheem, A.M. (2022b). Spatio-temporal variations in conservative and non-conservative properties of the surface seawater along the Red Sea coast, Egypt. Egyptian Journal of Aquatic Biology and Fisheries 26(5), 1033-1046. doi: 10.21608/ejabf.2022.266640

Shriadah, M., Okbah, M., & El-Deek, M. (2004). Trace metals in the water columns of the Red Sea and the Gulf of Aqaba, Egypt. Water, Air, and Soil Pollution, 153(1), 115–124. https://doi.org/10.1023/B:WATE.0000019938.57041.21

Soegianto, A., Putranto, T. W. C., Lutfi, W., Almirani, F. N., Hidayat, A. R., Muhammad, A., Firdaus, R. A., Rahmadhani, Y. S., Fadila, D. A. N., & Hidayati, D. (2020). Concentrations of metals in tissues of cockle Anadara granosa (Linnaeus, 1758) from East Java Coast, Indonesia, and potential risks to human health. International Journal of Food Sciences, 2020, 5345162. https://doi.org/10.1155/2020/5345162 PMID:32377516

Steele, J., Thorpe, S., & Turekian, K. (2001). Encyclopedia of ocean sciences.

Sun, C.-Y., Stifler, C. A., Chopdekar, R. V., Schmidt, C. A., Parida, G., Schoeppler, V., Fordyce, B. I., Brau, J. H., Mass, T., Tambutté, S., & Gilbert, P. U. P. A. (2020). From particle attachment to space-filling coral skeletons. Proceedings of the National Academy of Sciences of the United States of America, 117(48), 30159–30170. https://doi.org/10.1073/pnas.2012025117 PMID:33188087

Sung, P.-J., Lin, M.-R., Chiang, M. Y., & HWANG, T.-L. (. (2009). Soft Corals and Sea Fans-A Comprehensive Guide to the Tropical Shallow-Water Genera of the Central-West Pacific, the Indian Ocean and the Red Sea Soft Corals and Sea Fans-A Comprehensive Guide to the Tropical ShallowWater Genera of the Central-West Pacific, the Indian Ocean and the Red Sea 55, 154-157, 2001. Bulletin of the Chemical Society of Japan, 82(8), 987–996. https://doi.org/10.1246/bcsj.82.987

Thangaradjou, T., Raja, S., Subhashini, P., Nobi, E. P., & Dilipan, E. (2013). Heavy metal enrichment in the seagrasses of Lakshadweep group of islands—A multivariate statistical analysis. Environmental Monitoring and Assessment, 185(1), 673–685. https://doi.org/10.1007/s10661-012-2583-3 PMID:22396069

Thangaradjou, T., Sivakumar, K., Nobi, E., & Dilipan, E. (2010). Distribution of seagrasses along the Andaman and Nicobar Islands: a post tsunami survey. Recent Trends in Biodiversity of Andaman and Nicobar Islands, 157-160.

USEPA. (1986). Quality criteria for water. US Department of Commerce, National Technical Information Service, US Environmental Protection Agency. Springfield, Virginia, PB87-226759, EPA 440/5, 86-001.

Valiela, D., & Whitfield, P. H. (1989). Monitoring strategies to determine compliance with water quality objectives 1. Journal of the American Water Resources Association, 25(1), 63–69. https://doi.org/10.1111/j.1752-1688.1989.tb05666.x

Vander Putten, E., Dehairs, F., Keppens, E., & Baeyens, W. (2000). High resolution distribution of trace elements in the calcite shell layer of modern Mytilus edulis: Environmental and biological controls. Geochimica et Cosmochimica Acta, 64(6), 997–1011. https://doi.org/10.1016/S0016-7037(99)00380-4

Veron, J. (2014). Results of an update of the Corals of the World Information Base for the Listing Determination of 66 Coral Species under the Endangered Species Act. Report to the Western Pacific Regional Fishery Management Council, Honolulu.

Verseveldt, J. (1982). A revision of the genus Sarcophyton Lesson (Octocorallia, Alcyonacea). Brill.

Wright, J. P., & Jones, C. G. (2006). The concept of organisms as ecosystem engineers ten years on progress, limitations, and challenges. Bioscience, 56(3), 203–209. https://doi.org/10.1641/0006-3568(2006)056[0203:TCOOAE]2.0.CO;2

Downloads

Published

2022-12-22

How to Cite

Salah-Tantawy, A., Mahdy, A., Dar, M. A., Young, S.-S., & Abdelreheem, A. M. A. (2022). Assessment of heavy metal pollution in seawater, benthic flora and fauna and their ability to survive under stressors along the northern Red Sea, Egypt. Oceanological and Hydrobiological Studies, 51(4), 355–370. https://doi.org/10.26881/oahs-2022.4.05

Issue

Section

Articles