90Sr in Zostera marina from the Gulf of Gdańsk (southern Baltic Sea)

Authors

  • Michał Saniewski Institute of Meteorology and Water Management, National Research Institute
  • Tamara Zalewska Institute of Meteorology and Water Management, National Research Institute

Keywords:

90Sr, Zostera marina, bioaccumulation, Gulf of Gdańsk, Baltic Sea

Abstract

90Sr activity was determined in Zostera marina collected in the Gulf of Gdańsk in 2008-2013. 90Sr activity in Z. marina from Jama Kuznicka and Klif Orłowski range from 0.83 Bq kg-1 d.w. to 3.78 Bq kg-1 d.w. and from 0.68 Bq kg-1 d.w. to 4.95 Bq kg-1 d.w., respectively. The plants collected in spring-summer showed significant differences between 90Sr content in blades – 1.55 Bq kg-1 d.w. in 2011 and 2.18 Bq kg-1 d.w. in 2013, and in roots – 7.75 Bq kg-1 d.w. and 11.44 Bq kg-1 d.w., respectively. The reduction in 90Sr concentrations in Z. marina roots to 1-2 Bq kg-1 d.w. in summer resulted from the transport of this element to the young parts of the plant. In autumn and winter, the 90Sr content in the blades of Z. marina was increasing and reached the maximum of 3.77 Bq kg-1 d.w. This could be explained by the proces opposite to dilution, related to the biomass reduction and strontium concentration in the plant tissues. Changes in 90Sr concentration in Z. marina tissues are affected by isotope concentration in seawater as well as by salinity, which affects the concentration of Ca2+ – for which Sr2+ is a chemical analogue.

Downloads

Download data is not yet available.

References

Barum, J., Duarte, C.M., Krause-Jensen, D. & Greve, T.M. (2004). European seagrasses: an introduction to monitoring and management, A publication by the EU project Monitoring and Managing of European Seagrasses (M&MS). EVK3-CT-2000-00044.

Bouma, T.J., De Vries, M.B., Low, E., Peralta, G., Tanczos, C., van de Koppel, J. & Herman, P.M.J. (2005). Trade-offs related to ecosystem engineering: a case study on stiffness of emerging macrophytes. Ecology 86: 2187-2199. DOI:10.1890/04-1588.

Carignan, R. & Kalff, J. (1980). Phosphorus sources for aquatic weeds: water or sediments? Science 207: 987-988.

HELCOM (2013). Thematic assessment of long-term changes in radioactivity in the Baltic Sea, 2007-2010 Balt. Sea Environ. Proc. No. 135.

IAEA (2013). Worldwide Laboratory Comparison on the Determination of Radionuclides in IAEA-446 Baltic Sea Seaweed (Fucus vesiculosus), IAEA Analytical Quality in Nuclear Applications Series No. 25. IAEA, Wieden, Austria.

Jankowska, E., Włodarska-Kowalczuk, M., Kotwicki, L., Balazy, P. & Kuliński K. (2014). Seasonality in vegetation biometrics and its effects on sediment characteristics and meiofauna in Baltic seagrass meadows. Estuarine Coastal Shelf Sci. 139: 159-170. DOI: 10.1016/j.ecss.2014.01.003.

Kabata-Pendias, A. & Pendias, H. (2001). Trace elements in soils and plants, 3rd ed., CRC Press, Boca Raton, FL.

Kabata-Pendias, A. & Mukherjee, A.B. (2007). Trace Elements from Soil to Human. Berlin Heidelberg, Springer-Verlag.

Kryshev, A.I. (2006). 90Sr in fish: A review of data and possible model approach. Sci. Total Environ. 370: 182-189. DOI: 10.1016/j.scitotenv.2006.06.003.

Kruk-Dowgiallo, L. (1991). Long-term changes in underwater meadows of the Puck Lagoon. Acta Ichtyologica et Piscatoria 22: 77-84.

Kruk-Dowgiallo, L. (1998). Phytobenthos as an indicator of the state of environment of the Gulf of Gdańsk. Oceanol. Stud. 27(4): 105-121.

Outola, I., Saxen, R.L. & Heinavaara, S. (2009). Transfer of 90Sr into fish in Finnish lakes. J. Environ. Radioact. 100: 657-664.

Pham, M.K., Benmansour, M., Carvalho, F.P., Chamizo, E., Degering, D. et al. (2014). Certified Reference Material IAEA-446 for radionuclides in Baltic Sea seaweed. Appl. Radiat. Isot. 87: 468-74. DOI: 10.1016/j.apradiso.2013.11.013.

Pliński, M. & Jóźwiak, T. (2004). The distribution of water vegetation on the Polish coast of the Baltic Sea in 1996-2000. Oceanol. Hydrobiol. St. 33(2): 29-40.

Saniewski, M. & Zalewska, T. (2016). Atmospheric deposition and riverine load of 90Sr and 137Cs to the Gulf of Gdańsk (southern Baltic Sea) in the period 2005-2011. J. Environ. Radioact. 151(1): 1-11. DOI: 10.1016/j.jenvrad.2015.09.010.

Smith, J.T., Sasina, N.V., Kryshev, A.I., Belova, N.V. & Kudelsky, A.V. (2009). A review and test of predictive models for the bioaccumulation of radiostrontium in fish. J. Environ. Radioact. 100: 950-954. DOI: 10.1016/j.jenvrad.2009.07.005.

Solecki, J. & Chibowski, S. (2002). Determination of transfer factors for 137Cs and 90Sr isotopes in soil–plant system. J. Radioanal. Nucl. Chem. 252(1): 89-93.

Starichenko V.I. (2011). Accumulation of 90Sr in the bone tissue of northern mole voles in the head portion of the East Ural Radioactive Trace. Russ. J. Ecol. 42(1): 64-70.

Volchock, H.L., Kulp, J.L., Eckelmann, W.R. & Gaetjen, I.E. (1957). Determination of 90Sr and 140Ba in bone, dairy products, vegetation and soil. Ann. N. Y. Acad. Sci. 71: 295-301. DOI: 10.1111/j.1749-6632.1957.tb54602.x.

Zalewska, T. (2015). Makrofitobentos bioindicators in the classification of the marine environment of the Southern Baltic Sea (In Polish). Warszawa, IMGW-PIB.

Zheleznov, A.V., Zheleznova, N.B., Smetanin, N.I. & Sukhanovskaya, V.S. (2002). Intrapopulation Variability of Some Meadow Plant Species in Respect of Their Ability to Accumulate 90Sr. Russ. J. Genet. 38(5): 521-525.

Downloads

Published

2017-03-20

How to Cite

Saniewski, M., & Zalewska, T. (2017). 90Sr in Zostera marina from the Gulf of Gdańsk (southern Baltic Sea). Oceanological and Hydrobiological Studies, 46(1), 24–29. Retrieved from https://czasopisma.bg.ug.edu.pl/index.php/oandhs/article/view/8823

Issue

Section

Articles