Amplified fragment length polymorphism (AFLP)-based differentiation of selected Chara species
Keywords:
Chara, AFLP, Poland, morphology, molecular taxonomyAbstract
Charophytes are a group of green algae that grow in various types of water ecosystems and are characterized by a high degree of plasticity and morphological variation. To analyze the genetic diversity and taxonomic rank of several species from the genus Chara, the fingerprinting technique of Amplified Fragment Length Polymorphism (AFLP) was applied. We studied species that belong to sect. Grovesia (C. tenuispina, C. globularis, C. virgata, C. aspera and C. strigosa) and two species from the sect. Hartmania (C. intermedia and C. hispida). The individuals were collected in the field in north-eastern, central and eastern Poland. The species were identified based on morphological features and then analyzed using the AFLP fingerprinting method. UPGMA clustering and PCA analysis as well as morphological analysis revealed a clear separation of C. tenuispina and C. globularis, which formed separate clusters supported by high bootstrap values. Therefore, these species were distinguish as separate taxa, rather than varieties of C. globularis. Similarly, C. virgata also formed a separate cluster, thereby confirming that this taxon is a separate species, rather than a variety of C. globularis. The AFLP analysis did not show any differentiation between C. aspera and C. strigosa. The presented results do not fully support the taxonomic interpretation for the existence of several polymorphic species with numerous variations and forms, however, in some examples, the distinctive nature of the reproduction system may be used as a distinguishing feature of the taxa.
Downloads
References
Blindow, I. & Schütte, M. (2007). Elongation and mat formation of Chara aspera under different light and salinity conditions. Hydrobiol. 584: 69-76.
Bögle, M.G., Schneider, S., Mannschreck, B. & Melzer, A. (2007). Differentiation of Chara intermedia and C. baltica compared to C. hispida based on morphology and amplified fragment length polymorphism. Hydrobiol. 586: 155-166.
Bögle, M.G., Schneider, S.C., Schubert, H. & Melzer, A. (2010). Chara baltica Bruzelius 1824 and Chara intermedia A. Braun 1859 – Distinct species or habitat modifications? Aquat. Bot. 93: 195-201.
Braun, A. & Nordstedt, C.F.O. (1882). Fragmente einer Monographie der Characeen. Nach den hinterlassenden Manuscripten A. Braun’s. Abh. K. Akad. der Wissenschaft. zu Berlin, Berlin.
Cirujano, S., Cambra, J., Sanchez-Castillo, P.M., Meco, A. & Flor-Arnau, N. (2008). Carofitos (Characeae). Flora Iberica Algas continentals. Madrid: Real Jardin Botanico.
Corillion, R. (1957). Les Charophycées de France et d’Europe Occidentale. Rennes: Imprimierie Bretonne. Groves, J. & Bullock-Webster, G.R. (1924). The British Charophyta. Vol. II. Chareae with plates, concluding articles, geological sketch, bibliography and index. London: Ray Society.
Janssen, P., Coopman, R., Huys, G., Swings, J., Bleeker, P. et al. (1996). Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. Microbiol. 1942: 1881-1893.
Kovach, W.L. (2007). MVSP - A MultiVariate Statistical Package for Windows, ver. 3.1. Kovach Computing Services, Pentraeth, Wales, U.K.
Krause, W. (1997). Charales (Charophyceae). Jena: Gustav Fisher Verlag.
Mannschreck, B., Fink, T. & Melzer, A. (2002). Biosystematics of selected Chara species (Charophyta) using amplified fragment length polymorphism. Phycol. 41: 657-666.
McCourt, R.M., Delwiche, C.F. & Karol K.G. (2004). Charophyte algae and land plant origins. Trends in Ecol. Evol. 19: 661-666.
Meiers, S.T., Proctor, W.V. & Chapman, R.L. (1999). Phylogeny and biogeography of Chara (Charophyta) inferred from 18S rDNA sequences. Austral. J. Bot. 47: 347-360.
Migula, W. (1897). Die Characeen Deutschlands, Österreichs und der Schweiz. In L. Rabenhorst (Ed.), Kryptogamen Flora von Deutschland, Österreich und der Schweiz. vol. 5. Leipzig: Eduard Kummer.
Nei, M. & Li, W.H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Nat. Acad. Scien. 76: 5269-5273.
Olsen, S. (1944). Danish Charophyta. Chorological, ecological and biological investigations. Kongelige Danske Videnskabernes Selskabs. Biol. Skrif. 3: 1-240.
O’Reilly, C.L, Cowan, R.S & Hawkins, A.A. (2007). Amplified fragment length polymorphism genetic fingerprinting challenges the taxonomic status of the near-endemic species Chara curta Nolte ex Kütz. (Characeae). Bot. J. Linn. Soc. 155: 467-476.
Sakayama, H., Nozaki, H., Kasaki, H. & Hara, Y. (2002). Taxonomic re-examination of Nitella (Charales, Charophyceae) from Japan, based on microscopical studies of oospore wall ornamentation and rbcL gene sequences. Phycol. 41(4): 397-408.
Sakayama, H., Arai, S., Nozaki, H., Kasai, F. & Watanabe, M. (2006). Morphology, molecular phylogeny and taxonomy of Nitella comptonii (Charales, Characeae). Phycol.45: 417-421.
Schlüter, P.M. & Harris, S.A. (2006). Analysis of multilocus fingerprinting data sets containing missing data. Mol. Ecol. Not. 6: 569-572.
Schneider, S., Ziegler, C. & Melzer, A. (2006). Growth towards light as an adaptation to high light conditions in Chara branches. New Phytol. 172: 83-91.
Schneider, S.C., Nowak, P., Ammon, U. & Ballot, A. (2016). Species differenttiationin the genus Chara (Charophyceae): considerable phenotypic plasticity occurs within homogenous genetic groups. European Journal of Phycology. 3: 1-12.
Sepp, S. & Paal, J. (1998). Taxonomic continuum of Alchemilla (Rosaceae) in Estonia. Nord. J. Bot. 18: 519-535.
Sneath, P.H.A. & Sokal, R.R. (1973). Numerical Taxonomy. Freeman, San Francisco.
Urbaniak, J. (2007). Distribution of Chara braunii Gmelin 1826 (Charophyta) in Poland. Acta Soc. Bot. Pol. 76: 313-320.
Urbaniak, J., Gąbka, M. & Blazencic, J. (2008). Nitella tenuissima, a rare charophyte in central and Southern Europe. Cryptog. Algol. 29(2): 161-171.
Urbaniak, J. (2010). Analysis of morphological characters of Chara baltica, C. hispida, C. horrida and C. rudis from Europe. Plant Syst. Evol. 286(3): 209-221. DOI: 10.1007/s00606-010-0301-6.
Urbaniak, J. (2011a). An SEM and light microscopy study of the oospore wall ornamentation in Polish charophytes (Charales, Charophyceae) – genus Chara. N. Hedw. 93(1-2): 1-28. DOI: 10.1127/0029-5035/2011/0093-0001.
Urbaniak, J. (2011b). An SEM study of the oospore wall ornamentation in Polish charophytes (Charales, Charophyceae) – genus Lychnothamnus, Nitella and Nitellopsis. N. Hedw. 93(3-4): 537-549.
Urbaniak, J. & Blazencic, J. (2012). SEM study of oospore characteristics in endemic and endangered Balkan Charophytes. Cryptog. Algol. 33(3): 277-288.
Urbaniak, J., Langangen, A. & Van Ramm, J. (2012). Oospore Wall Ornamentation in the Genus Tolypella (Charales, Charophyceae). J. Phycol. 48(6): 1538-1545.
Urbaniak, J. & Combik, M. (2013). Genetic and morphological data fail to differentiate Chara intermedia from C. baltica, or C. polyacantha and C. rudis from C. hispida. European J. Phycol. 48(3): 253-259.
Urbaniak, J. & Gąbka, M. (2014). Polish Charophytes. An illustrated guide to identification. Wrocław: Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu.
Van de Peer, Y. & De Wachter, Y. (1994). TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comp. App. Biosc. 10: 569-70.
Vos, P., Hogers, R., Bleeker, M., Reijans, M., Van de Lee, T. et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucl. Acid Res. 23: 4407-4414.
Weising, K., Nybom, H., Wolf, K. & Meyer, W. (1995). DNA fingerprinting in plants and fungi. London – Tokyo: CRC Press.
Wood, R.D. (1962). New combinations and taxa in the revision of Characeae. Taxon 11: 7-25.
Wood, R.D. & Imahori, K.A. (1965). A revision of the Characeae. Weinheim: Verlag J. Cramer.