Preliminary study on antimicrobial activities of skin mucus fromby-catch of Elasmobranch species
DOI:
https://doi.org/10.26881/oahs-2023.2.01Keywords:
fish skin mucus, antimicrobial activity, batoid, skate, rayAbstract
Skates and rays, which are widely encountered in the by-catch of fisheries activities from the Sea of Marmara and banned for sale by regulation, are species that are discarded if caught. For this reason, in our study, we aimed to determine the bioactive potentials of these species, considered fishing waste, by investigating the skin secretions and microbial flora. In our study, both the skin flora and mucus contents of the discarded species Dasyatis pastinaca (Linnaeus,1758), Myliobatis aquila (Linnaeus, 1758), and Raja clavata (Linnaeus, 1758) caught in the Sea of Marmara were investigated to determine their potential antimicrobial activities. A total of 164 bacteria were isolated from the epidermal mucus of the three batoid species. Antibacterial activity was observed from three isolated bacteria against Escherichia coli, Vancomycin-resistant Enterococcus faecium, E. faecalis, and Bacillus subtilis. Additionally, the highest antibacterial activity was observed for skin mucus of R. clavata. Mouse fibroblast cell viability was challenged with mucus secretions. M. aquila and R. clavata mucus secretions exhibited no observable change after 24 and 48 hours. The assays indicated that both the isolates and the skin mucus have potential antimicrobial activity against opportunistic pathogens.
Downloads
References
Abdelmohsen, U. R., Bayer, K., & Hentschel, U. (2014). Diversity, abundance and natural products of marine sponge-associated actinomycetes. Natural Product Reports,31(3), 381–399. https://doi.org/10.1039/C3NP70111EPMID:24496105.
Altug, G., Gurun, S., Cardak, M., Ciftci, P. S. & Kalkan, S. (2012).The occurrence of pathogenic bacteria in some ships'ballast water incoming from various marine regions to the Sea of Marmara, Turkey. Mar. Environ. 81: 35-42. DOI:10.1016/j.marenvres.2012.08.005.
Anonymous. Ministry of Agriculture and Rural Affairs (2020) Communiqué Number 5/1 on Regulation of Commercial Fishery Fishing (Bulletin No: 2020/20) Official newspaper: Republic of Turkey, Presidential Complex.
Asakawa, M. (1970). Histochemical studies of the mucus on the epidermis of eel, Anguilla japonica. Nippon Suisan Gakkaishi, 36, 83–87. https://doi.org/10.2331/suisan.36.83.
Austin, B., & McIntosh, D. (1988). Natural antibacterial compounds on the surface of rainbow trout, Salmogairdneri Richardson. Journal of Fish Diseases, 11(3), 275–277. https://doi.org/10.1111/j.1095-8649.1988.tb05444.x.B
en Bacha, A., Daihan, S. K., Moubayed, N. M., & Mejdoub, H.(2013).Purification and characterization of a phospholipase A2-IIA from common stingray (Dasyatis pastinaca) intestine. Indian Journal of Biochemistry & Biophysics,50, 186–195. https://doi.org/10.1186/1476511X-10-32PMID:23898481.
Bal, S., & Sanlı, N. O. (2020). Evaluation of the effectiveness of antibacterial wall paint to enhance the hygienic conditions of the interiors. J. Fac. Eng. Archit. Gaz., 35(4), 1913–1922.https://doi.org/10.17341/gazimmfd.678683.
Barría, C., Navarro, J., Coll, M., Fernandez‐Arcaya, U., & Sáez‐Liante, R. (2015). Morphological parameters of abundant and threatened chondrichthyans of the northwestern Mediterranean Sea. Journal of Applied Ichthyology, 31(1),114–119. https://doi.org/10.1111/jai.12499.
Bragadeeswaran, S., Priyadharshini, S., Prabhu, K., & Rani, S.R. (2011). Antimicrobial and hemolytic activity of fishepidermal mucus Cynoglossus arel and Arius caelatus. Asian Pacific Journal of Tropical Medicine, 4(4), 305–309. https://doi.org/10.1016/S1995-7645(11)60091-6 PMID:21771475.
Çandiroğlu, B., & Doğruöz Güngör, N. (2020). The biotechnological potentials of bacteria isolated from ParsıkCave, Turkey. Johnson Matthey Technol Rev., 64, 396–406.https://doi.org/10.1595/205651320X15923194903811.
Cardak, M., & Altuğ, G. (2014). Species distribution and heavy metal resistance of Enterobacteriaceae members isolated from Istanbul Strait. Fresenius Environmental Bulletin, 23(10A), 2620–2626. https://doi.org/10.30897/ijegeo.704260.
Chau, R., Kalaitzis, J. A., Wood, S. A., & Neilan, B. A. (2013).Diversity and biosynthetic potential of culturable microbes associated with toxic marine animals. Marine Drugs,11(8), 2695–2712. https://doi.org/10.3390/md11082695PMID:23917066.
Cho, G. C., Dodds, J., & Santamarina, J. C. (2007). Closure to “Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural and Crushed Sands” by Gye-ChunCho, Jake Dodds, and J. Carlos Santamarina. Journal of Geotechnical and Geoenvironmental Engineering,133(11), 1474–1474. https://doi.org/0.1061/(ASCE)1090-0241(2006)132:5(591).
Çiftçi Türetken, P. S., & Altuğ, G. (2016). Bacterial pollution,activity and heterotrophic diversity of the northern part of the Aegean Sea, Turkey. Environmental Monitoring and Assessment, 188(2), 127. https://doi.org/10.1007/s10661-016-5109-6 PMID:26832724.
Clinical and Laboratory Standards Institute (CLSI). (2006).Methods for dilution antimicrobial susceptibility tests forbacteria that grow aerobically. Document M7-A7. Wayne,USA.
Clinical and Laboratory Standards Institute (CLSI). (2016). CLSI Performance standards for antimicrobial susceptibility testing.
Coello, W. F., & Khan, M. A. (1996). Protection against heavymetal toxicity by mucus and scales in fish. Archives of Environmental Contamination and Toxicology, 30, 319–326.https://doi.org/10.1007/BF00212289 PMID:8854966.
Cole, A. M., Weis, P., & Diamond, G. (1997). Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. The Journal of Biological Chemistry, 272(18), 12008–12013. https://doi.org/10.1074/jbc.272.18.12008 PMID:9115266.
Cortés, E. (1999). Standardized diet compositions and trophic levels of sharks. ICES Journal of Marine Science, 56(5), 707–717. https://doi.org/10.1006/jmsc.1999.0489.
Ellis, A. E. (2001). Innate host defense mechanisms of fish against viruses and bacteria. Developmental and Comparative Immunology, 25(8-9), 827–839. https://doi.org/10.1016/s0145-305x(01)00038-6 PMID:11602198.
Fernandes, J. M., & Smith, V. J. (2002). A novel antimicrobial function for a ribosomal peptide from rainbow trout skin. Biochemical and Biophysical Research Communications,296(1), 167–171. https://doi.org/10.1016/S0006-291X(02)00837-9 PMID:12147245.
Fouz, B., Devaja, S., Gravningen, K., Barija, J. L., & Tranzo, A. E.(1990). Antibacterial action of the mucus of the turbot. Bulletin of the European Association of Fish Pathologists, 10,56–59. https://doi.org/10.5539/ijb.v6n2p42.
Fuochi, V., Li Volti, G., Camiolo, G., Tiralongo, F., Giallongo, C.,Distefano, A., Petronio Petronio, G., Barbagallo, I., Viola,M., Furneri, P. M., Di Rosa, M., Avola, R., & Tibullo, D. (2017).Antimicrobial and anti-proliferative effects of skin mucus derived from Dasyatis pastinaca (Linnaeus, 1758). Marine Drugs, 15(11), 342. https://doi.org/10.3390/md15110342PMID:29104260.
Hellio, C., Pons, A. M., Beaupoil, C., Bourgougnon, N., & Gal, Y.L. (2002). Antibacterial, antifungal and cytotoxic activities of extracts from fish epidermis and epidermal mucus. InternationalJournalofAntimicrobialAgents,20(3),214-219.https://doi.org/10.12980/JCLM.2.2014APJTB-2013-0033PMID:12385701.
Kalidasan, K., Ravi, V., Sahu, S. K., Maheshwaran, M. L., & Kandasamy, K. (2014). Antimicrobial and anticoagulantactivities of the spine of stingray Himantura imbricata. Journal of Coastal Life Medicine, 2(2), 89–93. https://doi.org/10.12980/JCLM.2.2014APJTB-2013-0033.
Kalkan, S., & Altuğ, G. (2015). Bio-indicator bacteria & environmental variables of the coastal zones: The example of the Güllük Bay, Aegean Sea, Turkey. Marine Pollution Bulletin, 95(1), 380–384. https://doi.org/10.1016/j.marpolbul.2015.04.017 PMID:25956440.
Katra, N., Hisar, O., Karatas, S., Turgay, E., & Sarvan, C. (2016). Invitro antimicrobial activities of extracts from ballan wrasse (Labrus bergylta) skin mucus. Mar. Sci. Tech. Bull. 5(1): 13-15.. https://doi.org/10.13140/2.1.4108.8646.
Kaya, N., Arslan Aydoğdu, E. Ö., & Kimiran, A. (2021). Isolation and identification of Listeria spp. from white cheese samples presented for consumption in Istanbul. SAUJS, 25(6), 1253–1262. https://doi.org/10.16984/saufenbilder.985810.
Kumari, U., Nigam, A. K., Mitial, S., & Mitial, A. K. (2011). Antibacterial properties of the skin mucus of the freshwater fishes, Rita rita and Channa punctatus. European Review for Medical and Pharmacological Sciences,15(7), 781–786. https://doi.org/10.1111/j.1365-2761.1988.tb00550 PMID:21780547.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685. https://doi.org/10.1038/227680a0PMID:5432063.
Lauth, X., Shike, H., Burns, J. C., Westerman, M. E., Ostland, V. E.,Carlberg, J. M., Van Olst, J. C., Nizet, V., Taylor, S. W., Shimizu,C., & Bulet, P. (2002). Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptide from hybrid striped bass. The Journal of Biological Chemistry, 277(7), 5030–5039. https://doi.org/10.1074/jbc.M109173200 PMID:11739390.
Lemaître, C., Orange, N., Saglio, P., Saint, N., Gagnon, J., & Molle, G. (1996). Characterization and ion channel activities of novel antibacterial proteins from the skin mucosa of carp(Cyprinus carpio). European Journal of Biochemistry, 240(1), 143–149. https://doi.org/10.1111/j.1432-1033.1996PMID:8797847.
Luer, C. A. (2014). Novel compounds from shark and stingray epidermal mucus with antimicrobial activity against wound infection pathogens. Sarasota, Florida: Mote Marine Laboratory, Inc. (ADA600463).
Masso-Silva, J. A., & Diamond, G. (2014). Antimicrobial peptides from fish. Pharmaceuticals (Basel, Switzerland), 7(3), 265–310. https://doi.org/10.3390/ph7030265 PMID:24594555.
Meléndez, M. J., Báez, J. C., Serna-Quintero, J. M., Camiñas, J. A.,Fernández, I. L., Real, R., & Macías, D. (2017). Historical and ecological drivers of the spatial pattern of Chondrichthyes species richness in the Mediterranean Sea. PLoS One, 12(4),e0175699. https://doi.org/10.1371/journal.pone.0175699PMID:28406963.
Monteiro-dos-Santos, J., Conceição, K., Seibert, C. S., Marques, E. E., Silva, P. I., Jr., Soares, A. B., Lima, C., & Lopes-Ferreira, M.(2011). Studies on pharmacological properties of mucus and sting venom of Potamotrygon cf. henlei. International Immunopharmacology, 11(9), 1368–1377. https://doi.org/10.1016/j.intimp.2011.03.019 PMID:21481330.
Navia, A. F., Mejía-Falla, P. A., López-García, J., Giraldo, A., & Cruz-Escalona, V. H. (2017). How many trophic roles can elasmobranchs play in a marine tropical network? Marine and Freshwater Research, 68(7), 1342–1353. https://doi.org/10.1071/MF16161.
O’Neill, J. (2016). Tackling drug-resistant infections globally: final report and recommendations. Government of the United Kingdom., https://doi.org/10.16984/saufenbilder.985810.
Qin, C., Huang, K., & Xu, H. (2002). Isolation and characterization of a novel polysaccharide from the mucus of the loach, Misgurnus anguillicaudatus. Carbohydrate Polymers, 49(3),367–371. https://doi.org/10.1016/S0144-8617(01)00335-6.
Ritchie, K. B. (2006). Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Marine Ecology Progress Series, 322, 1–14. https://doi.org/10.3354/meps322001.
Ritchie, K. B., Schwarz, M., Mueller, J., Lapacek, V. A., Merselis, D., Walsh, C. J., & Luer, C. A. (2017). Survey of antibiotic-producing bacteria associated with the epidermal mucus layers of rays and skates. Frontiers in Microbiology,8, 1050. https://doi.org/10.3389/fmicb.2017.01050PMID:28725216.
Robinette, D., Wada, S., Arroll, T., Levy, M. G., Miller, W. L., & Noga, E. J. (1998). Antimicrobial activity in the skin of the channel catfish Ictalurus punctatus: Characterization of broad-spectrum histone-like antimicrobial proteins. Cellular and Molecular Life Sciences, 54(5), 467–475. https://doi.org/10.1007/s000180050175 PMID:9645227.
Shen, Y., Zhang, J., Xu, X., Fu, J., & Li, J. (2012). Expression of complement component C7 and involvement in innate immune responses to bacteria in grass carp. Fish & Shellfish Immunology, 33(2), 448–454. https://doi.org/10.1016/j.fsi.2012.05.016 PMID:22617254.
Shike, H., Lauth, X., Westerman, M. E., Ostland, V. E., Carlberg, J.M., Van Olst, J. C., Shimizu, C., Bulet, P., & Burns, J. C. (2002).Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge. European Journal of Biochemistry, 269(8), 2232–2237. https://doi.org/10.1046/j.1432-1033.2002.02881.x PMID:11985602.
Tsutsui, S., Yamaguchi, M., Hirasawa, A., Nakamura, O., &Watanabe, T. (2009). Common skate (Raja kenojei) secretes pentraxin into the cutaneous secretion: The first skin mucus lectin in cartilaginous fish. Journal of Biochemistry,146(2), 295–306. https://doi.org/10.1093/jb/mvp069PMID:19416957.
Ullal, A. J., Litaker, R. W., & Noga, E. J. (2008). Antimicrobial peptides derived from hemoglobin are expressed in epithelium of channel catfish (Ictalurus punctatus, Rafinesque). Developmental and Comparative Immunology, 32(11), 1301–1312. https://doi.org/10.1016/j.dci.2008.04.005J PMID:18538841.
Vennila, R., Kumar, K. R., Kanchana, S., Arumugam, M., Vijayalakshmi, S., & Balasubramaniam, T. (2011).Preliminary investigation on antimicrobial and proteolytic property of the epidermal mucus secretion of marine stingrays. Asian Pacific Journal of Tropical Biomedicine, 1(2), 239–243. https://doi.org/10.1016/S2221-1691(11)60162-7.
Yap, A. S. J. (1979). Microbiological considerations in shark handling. Food Technology in Australia, 31, 297–300.https://doi.org/10.1111/1758-2229.1253.