Investigating otolith mass asymmetry in four fish species from Antalya Bay, Mediterranean coast of Türkiye
DOI:
https://doi.org/10.26881/oahs-2025.1.07Keywords:
Nemipterus randalli, Boops boops, Scorpaena elongata, Scorpaena notata, ecological factors, Antalya Bay, TürkiyeAbstract
Otolith weight (OWe) asymmetry plays a crucial role in the vestibular function of the inner ear, potentially affecting its performance. Typically, OWe asymmetry values range from −0.2 to +0.2 (−0.2 < X < +0.2). In this study, we collected 136 fish specimens from the Gulf of Antalya, located along the Mediterranean coast of Turkey, which included the species Nemipterus randalli, Boops boops, Scorpaena elongata, and Scorpaena notata. Our findings revealed that the level of OWe asymmetry in these four teleost species increases with the total length (TL) of the fish. Evaluating OWe asymmetry is essential for understanding its potential impact on larval settlement in this significant fishing region. The results also showed that N. randalli and B. boops exhibited lower levels of OWe asymmetry compared with S. elongata and S. notata. Environmental factors, which indirectly influence somatic growth and otolith formation, may explain the significant differences observed, as the species inhabit distinct environments.
Downloads
References
Al-Mamry, J. M., Jawad, L. A., Al-Bimani, S. M. H., Al-Busaidi, H. K., Al-Marzouqi, M. S., & Al-Habsi, S. H. (2011a). Asymmetry analysis study on Callionymus margaretae Regan, 1906 collected from the Arabian Sea coasts of Oman. Ribarstvo, 69(1), 3–9.
Al-Mamry, J., Jawad, L. A., Al-Bimani, S., Al-Ghafari, F., Al Mamry, D., & Al-Marzouqi, M. (2011b). Asymmetry in some morphological characters of Leiognathus equulus (Forsskål) (Leiognathidae) collected from the sea of Oman. Archive of Polish Fisheries, 19(1), 51–55 (The reference is fine, DOI 10.2478/v10086-011-0006-7).
Annabi, A., Said, K., & Reichenbacher, B. (2013). Interpopulation differences in otolith morphology are genetically encoded in the killifish Aphanius fasciatus (Cyprinodontiformes). Scientia Marina, 77(2), 269–279. https://doi.org/10.3989/ scimar.03763.02A.
Bauchot, L., & Hureau, J. (1984). Fishes of the North-Eastern Atlantic and the Meediterranean. Richard Clay Ltd.
Bauchot, M. L. (1987). Poissons osseux. Fiches FAO d’identification pour les besoins de la pêche. (rev. 1). In M. S. Fischer, M. L. Bauchot, & M. Schneider (Eds.), Méditerranée et mer Noire. Zone de pêche 37 (Vol. II). Commission des Communautés Européennes and FAO. pp. 891–1421.
Ben Labidi, M. B., Mejri, M., Shahin, A. A. B., Quignard, J. P., Trabelsi, M., & Ben Faleh, A. R. (2020). Stock discrimination of the bogue Boops boops (Actinopterygii, Sparidae) form two Tunisian Marine Stations using the otolith shape. Acta Ichthyologica et Piscatoria, 50(4), 413–422. https://doi. org/10.3750/AIEP/02978.
Ben Lamine, Y., Yahia-Kefi, O. D., & Daly Yahia, N. M. (2011). Caracterisation Physico-Chimique de la partie sud oust de la baie de Tunis sous l’in f luence des apports de l’oued Meliane. Bulletin de l’Instiut National des Sciences et Techologies de la Mer, 38, 123–129. https://doi. org/10.71754/instm.bulletin.v38.571).
Bouriga, N., Mejri, M., Dekhil, M., Bejaoui, S., Quignard, J. P., & Trabelsi, M. (2021). Investigating otolith mass asymmetry in six benthic and pelagic fish species (Actinopterygii) from the Gulf of Tunis. Acta Ichthyologica et Piscatoria, 51(2), 193–197. https://doi.org/10.3897/aiep.51.64220.
De Jong, H. A. A., Sondag, E. N. P. M., Kuipers, A., & Oosterveld, W. J. (1996). Swimming be haviour of fish during short periods of weightlessness. Aviation, Space and Environmental Medicine, 67, 463–466.
Egorov, A. D., & Samarin, G. I. (1970). Possible change in the paired operation of the vestibular apparatus during weightlessness. Kosmicheskaya biologiya I Aviakosmicheskaya Meditsina, 4, 85–86.
Elsdon, T. S., & Gillanders, B. M. (2002). Interactive effects of temperature and salinity on otolith chemistry: Challenges for determining environ mental histories of fish. Candian Journal of Fisheries and Aquatic Science, 59(11), 1796–1808. https://doi.org/10.1139/f02-154.
Eschmeyer, W. N., & Dempster, L. J. (1990). Scorpaenidae. In J. C. Quero, J. C. Hureau, C. Karrer, A. Post, & L. Saldanha (Eds.), Check-list of the fishes of the eastern tropical Atlantic (CLOFETA) (Vol. 2, pp. 665–679). JNICT, SEI, UNESCO.
Fey, D. P., & Hare, J. A. (2008). Fluctuating asymmetry in the otoliths of larval Atlantic menhaden Brevoortia tyrannus (Latrobe) – A condition indicator? Journal of Fish Biology, 72(1), 121–130. https://doi.org/10.1111/j.1095- 8649.2007.01684.x.
Gagliano, M., Depczynski, M., Simpson, S. D., & Moore, J. A. Y. (2008). Dispersal without errors: Symmetrical ears tune into the right frequency for survival. Proceedings of Biological Sciences, 275(1634), 527–534. https://doi. org/10.1098/rspb.2007.1388.
Grønkjaer, P. (2016). Otoliths as individual indicators: A reappraisal of the link between fish physiology and otolith characteristics. Marine and Freshwater Research, 67(7), 881888. https://doi.org/10.1071/MF15155.
Hilbig, R., Anken, R.H., Sonntag, G., Höhne, S., Henneberg, J., Kretschmer, N., & Rahmann, H. (2002). Effects of altered gravity on the swimming behaviour of fish. Advances in Space Research, 30(4), 835-841.
Hoffman, R. B., Salinas, G. A., & Baky, A. A. (1977). Behavioural analyses of killifish exposed to weightlessness in the Apollo-Soyus Test Project. Aviation, Space and Environmental Medicine, 48, 712–717.
Hureau, J. C., & Litvinenko, N. I. (1986). Scorpaenidae. In P. J. P. Whitehead, M. L. Bauchot, J. C. Hureau, J. Nielsen, & E. Tortonese (Eds.), Fishes of the North-eastern Atlantic and the Mediterranean (Vol. 3, pp. 1211–1229). UNESCO.
Izzo, C., Reis-Santos, P., & Gillanders, B. M. (2018). Otolith chemistry does not just reflect environmental conditions: A meta-analytic evaluation. Fish and Fisheries, 19(3), 441– 454. https://doi.org/10.1111/faf.12264.
Jawad, L., Al-Mamry, J., & Al-Mamari, D. (2012). Fluctuating asymmetry in the otolith width of Carangoides caeruleopinnatus (Carangidae) collected from Muscat city coast on the sea of Oman. Croatian Journal of Fisheries, 70(3), 125–133.
Jawad, L., Gnohossou, P., & Tossou, A. G. (2020). March. Bilateral asymmetry in the mass and size of otolith of two cichlid species collected from Lake Ahémé and Porto-Novo Lagoon (Bénin, West Africa). Anales de Biología, 42, 9–20. https://doi.org/10.6018/analesbio.42.02.
Jawad, L. A., & Adams, N. J. (2021). Fluctuating asymmetry in the size of the otolith of Engraulis australis (Shaw, 1790) recovered from the food of the Australasian gannet, Morus serrator, Hauraki Gulf, New Zealand. Marine Pollution Bulletin, 168, 112391. https://doi.org/10.1016/j. marpolbul.2021.112391.
Jawad, L. A., & Sadighzadeh, Z. (2013). Otolith mass asymmetry in the mugilid fish, Liza klunzingeri (Day, 1888) collected from the Persian Gulf near Bandar Abbas. Anales de Biología, 35, 105–107.
Jawad, L. A. (2013). Otolith mass asymmetry in Carangoides caerulepinnatus (Rüppell, 1830) (family: Carangidae) collected from the sea of Oman. Ribarstvo, 71(1), 37–41. https://hrcak.srce.hr/101158. https://doi. org/10.14798/71.1.622.
Jawad, L. A., Abdulsamad, S. M., Al-Nusear, A. N., Waryani, B., & Rutkayová, J. (2021). Otolith mass asymmetry in three sparid fish species collected from the Iraqi waters. Marine Pollution Bulletin, 173(Pt A), 112968. https://doi. org/10.1016/j.marpolbul.2021.112968.
Jawad, L. A., Al-Mamry, J. M., Hager, M., Al Mamari, M., Al-Yarubi, M., Al-Busaidi, H. K., & Al-Mamary, D. S. (2011). Otolith mass asymmetry in Rhynchorhamphus georgi (Valenciennes, 1846) (Family: Hemiramphidae) collected from the sea of Oman. Journal of the Black Sea/Mediterranean Environments, 17, 47–55 (The reference is fine, No DOI is available).
Kassambara, A. (2023). Rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.7.2, 2023, https://CRAN.R-project.org/package=rstatix.
Kılıç, E., Can, M. F., & Yanar, A. (2021). Assessment of some heavy metal accumulation and potential health risk for three fish species from three consecutive bay in NorthEastern Mediterranean Sea. Marine Life Science, 3(1), 24–38. https://doi.org/10.51756/marlife.938938.
L’Abée-Lund, J. H. (1988). Otolith shape discriminates between juvenile Atlantic salmon, Salmo salar L., and brown trout, Salmo trutta L. Journal of Fish Biology, 33(6), 899–903. https://doi.org/10.1111/j.1095-8649.1988.tb05538.x.
Lee, D. H., & Lysak, R. L. (1990). Effects of azimuthal asymmetry on ULF waves in the dipole magnetosphere. Geophysics Research Letters, 17, 53–56. https://doi.org/10.1029/ GL017i001p00053.
Leventeli, Y., Yalcin, F., & Kilic, M. (2019). An investigation about heavy metal pollution of Duden and Goksu Streams (Antalya, Turkey). Applied Ecology and Environmental Research, 17(2), 2424–2436. https://doi.org/10.15666/ aeer/1702_24232436.
Lombarte, A., & Cruz, A. (2007). Otolith size trends in marine fish communities from different depth strata. Journal of Fish Biology, 71(1), 53–76. https://doi.org/10.1111/j.1095- 8649.2007.01465.x.
Lombarte, A., Palmer, M., Matallanas, J., Gómez-Zurita, J., & Morales-Nin, B. (2010). Ecomorphological trends and phylogenetic inertia of otolith sagittae in Nototheniidae. Environmental Biology of Fishes, 89(3–4), 607–618. https:// doi.org/10.1007/s10641-010-9673-2.
Lychakov, D. V., & Rebane, Y. T. (2004). Otolith mass asymmetry in 18 species of fish and pigeon. Journal of Gravitational Physiology, 11, 17–34.
Lychakov, D. V., & Rebane, Y. T. (2005). Fish otolith mass asymmetry: Morphometry and influence on acoustic functionality. Hearing Research, 201(1–2), 55–69. https:// doi.org/10.1016/j.heares.2004.08.017.
Lychakov, D. V. (1992). Morphometric studies of fish otoliths in relation to vestibular function. Zhurnal Evolutioni Biokhimi Fiziologi, 28, 531–539.
Lychakov, D. V. (2002). Otolithic membrane: Structural and functional organization, evolution, ecomorphological plasticity and tolerance to extreme conditions [Doctorskaya Dissertaziya], Vol 1. Sechenov Institute, St. Petersberg 2, 1–266.
Lychakov, D.V., Rebane, Y.T., Lombarte, A., Fuiman, L.A., & Takabayashi, A. (2006). Fish otolith asymmetry: morphometry and modeling. Hearing research, 219(1–2), 1–11. doi:10.1016/j.heares.2006.03.019.
Lychakov, D. V., Boyadzhieva-Mikhailova, A., Christov, I., Pashchinin, A. N., Evdokimov, I. I., & Matkov, A. A. (1988). Changes in the otolith apparatus of rat and fish after pro longed exposure to acceleration. Kosmicheskaya biologiya I Aviakosmicheskaya Meditsin, 22, 27–33.
Lychakov, D. V., Rebane, Y. T., Lombarte, A., Demestre, M., & Fuiman, L. (2008). Saccular otolith mass asymmetry in adult flatfishes. Journal of Fish Biology, 72(10), 25792594. https://doi.org/10.1111/j.1095-8649.2008.01869.x.
Lychakov, D. V., Rebane, Y. T., Lombarte, A., Fuiman, L. A., & Takabayashi, A. (2006). Fish otolith asymmetry: Morphometry and modeling. Hearing Research, 219(1–2), 1–11. https://doi.org/10.1016/j.heares.2006.03.019.
Mabrouk, L., Guarred, T., Hamza, A., Messaoudi, I., & Hellal, A. N. (2014). Fluctuating asymmetry in grass goby Zosterisessor ophiocephalus Pallas, 1811 inhabiting polluted and unpolluted area in Tunisia. Marine Pollution Bulletin, 85(1), 248–251. https://doi.org/10.1016/j. marpolbul.2014.06.015.
Mei, W., Yu, G., & Greenwell, B. (2022). ggtrendline: Add Trendline and Confidence Interval to ‘ggplot’. R package version 1.0.3, 2022, https:// github.com/ PhDMeiwp/ ggtrendline.
Munday, P. L., Hernaman, V., Dixson, D. L., & Thorrold, S. R. (2011). Effect of ocean acidification on otolith development in larvae of a tropical marine fish. Biogeosciences, 8, 2329– 2356. https://doi.org/10.5194/bg-8-1631-2011.
Palmer, A. R. (1994). Fluctuating asymmetry analyses: A premier. In T. A. Markov (Ed.), Developmental instability: Its origin and evolutionary implications (pp. 335–364). Kluwar. https://doi.org/10.1007/978-94-011-0830-0_26.
Perry, D. M., Redman, D. H., Widman, J. C. Jr., Meseck, S., King, A., & Pereira, J. J. (2015). Effect of ocean acidification on growth and otolith condition of juvenile scup, Stenotomus chrysops. Ecology and Evolution, 5(18), 4187–4196. https:// doi.org/10.1002/ece3.1678.
Rahman, H., & Anken, R. H. (2002). Gravitation biology using fish as model systems for understanding motion sickness susceptibility. Journal of Gravitational Physiology, 9(1), 19–20.
Samarin, G. I. (1992). Study of the labyrinth asymmetry and its possible role in the motion sickness genesis (Tezisy Kandidatskoi Dissertazii) (pp. 1–33). Institute for Biomedical Problems. (in Russian).
Scherer, H., Helling, K., Clarke, A. H., & Hausmann, S. (2003). Motion sickness and otolith asymmetry. Biological Sciences in Space, 15(4), 401–404. https://doi.org/10.2187/ bss.15.401.
Takabayashi, A., & Ohmura-Iwasaki, T. (2003). Functional asymmetry estimated by measurements of otolith in fish. Biological Sciences in Space, 17(4), 293–297. https://doi. org/10.2187/bss.17.293.
Thiam, N. (2004). Ecomorphologie de Trisopterus luscus (Linnaeus, 1758) tacaud, adaptation a la temp’erature at l’asymm’etric fluctuante [Ph.D. Thesis] Facult’e des Sciences, Universit’e de Vigo (190 pp.).
Valentine, D. W., Soule, M. E., & Samollow, P. (1973). Asymmetry in fishes: A possible statistical indicator of environmental stress. Fish Bulletin, 71(2), 357–370.
Vignon, M., & Morat, F. (2010). Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Marine Ecology Progress Series, 411, 231–241. https://doi.org/10.3354/meps08651.
von Baumgarten, R. J., Wetzig, J., Vogel, H., & Kass, J. R. (1982). Static and dynamic mechanisms of space vestibular malaise. The Physiologist, 25(6), 33–36.
Vrdoljak, D., Matic-Skoko, S., Peharda, M., Uvanovic, H., Markulin, K., & Mertz-Kraus, R. (2020). Otolith fingerprints reveals potential pollution exposure of newly settled juvenile Sparus aurata. Marine Pollution Bulletin, 160, 111695. https://doi.org/10.1016/j. marpolbul.2020.111695.
Wang, W. X. (2002). Interactions of trace metals and different marine food chains. Marine Ecology Progress Series, 243, 295–309. https://doi.org/10.3354/meps243295.
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag. Yalçin, F. (2020). Application of multivariate statistic and pollution index techniques to determine beach sand element distribution, East of Antalya City. Filomat, 34(2), 623–630. https://doi.org/10.2298/FIL2002623Y.
Yalçın, M. G., Mutlu, E., Olguner, C., Atakoğlu, ÖÖ, Bat, L., & Özkan, E. Y. (2023). Spatial geochemical structure of soft sediment on shallow littoral of the Gulf of Antalya, the eastern Mediterranean Sea. Marine Pollution Bulletin, 193, 115–155. https://doi.org/10.1016/j.marpolbul.2023.115155.