Star Trek: The Next Regeneration – czyli o tym, jak żaby nie są w tych tematach zielone
DOI:
https://doi.org/10.26881/tutg.2025.1.04Słowa kluczowe:
regeneracja, Xenopus laevis, terapie komórkami macierzystymiAbstrakt
Praca wskazuje szlaki sygnalizacyjne oraz czynniki transkrypcyjne i białka zaangażowane w regenerację u ludzi, aksolotli i żab Xenopus. Omówione jest działanie i wpływ na regenerację m.in. szlaków Hippo oraz Jak/Stat, genów Xetrov oraz Sox2/3, czynników takich jak melanokortyny Mc4r, interleukina 11, klf oraz udział komórek ROC. Opisane zostały drogi regeneracji kończyn, części układu nerwowego takich jak mózg, rdzeń nerwowy i nerw wzrokowy oraz narządów wewnętrznych jak serce czy wątroba u ww. organizmów . Autor wskazuje na ograniczenia regeneracji u żab Xenopus oraz porównuje umiejętności regeneracyjne człowieka. Wspomniane są aspekty ewolucyjne zaangażowane w tracenie niektórych cech przez ssaki oraz rozpatrywana jest możliwość wykorzystania umiejętności regeneracyjnych płazów i zaangażowanych w nie czynników do terapii przyszłości. Poruszona jest również tematyka obecnych nowatorskich terapii komórkowych oraz ich dalszy tor i niebezpieczeństwa z nimi związane.
Downloads
Bibliografia
Agathocleous M., Iordanova I., Willardsen M. I., Xue X. Y., Vetter M. L., Harris W. A., Moore K. B. (2009). A directional Wnt/beta-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina. Development, 136(19), 3289-3299, doi: 10.1242/dev.040451.
Aztekin C., Hiscock T. W., Marioni J. C., Gurdon J. B., Simons B. D., Jullien J. (2019). Identification of a regeneration-organizing cell in the Xenopus tail. Science, 364(6441), 653-658, doi: 10.1126/science.aav9996.
Bely A. E. (2010). Evolutionary loss of animal regeneration: pattern and process. Integrative and comparative biology, 50(4), 515-527, doi: 10.1093/icb/icq118.
Bely A. E., Nyberg K. G. (2010). Evolution of animal regeneration: re-emergence of a field. Trends in ecology & evolution, 25(3), 161-170, doi: 10.1016/j.tree.2009.08.005.
Bergmann O., Bhardwaj R. D., Bernard S., Zdunek S., Barnabé-Heider F., Walsh S., Zupicich J., Alkass K., Buchholz B. A., Druid H., Jovinge S., Frisén J. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324(5923), 98-102, doi: 10.1126/science.1164680.
Bolaños-Castro L. A., Walters H. E., García Vázquez R. O., Hee Yun M. (2021). Immunity in salamander regeneration: Where are we standing and where are we headed? Developmental dynamics: an official publication of the American Association of Anatomists, 250(6), 753- 767, doi: 10.1002/dvdy.251.
Burgess R. J., Agathocleous M., Morrison S. J. (2014). Metabolic regulation of stem cell function. Journal of internal medicine, 276(1), 12-24, doi: 10.1111/joim.12247.
Chen L., Chan S. W., Zhang X., Walsh M., Lim C. J., Hong W., Song H. (2010). Structural basis of YAP recognition by TEAD4 in the hippo pathway. Genes & development, 24(3), 290-300, doi: 10.1101/gad.1865310.
Duncan T., Valenzuela M. (2017). Alzheimer's disease, dementia, and stem cell therapy. Stem cell research & therapy, 8(1), 111, doi: 10.1186/s13287-017-0567-5.
Endo T., Yoshino J., Kado K., Tochinai S. (2007). Brain regeneration in anuran amphibians. Development, growth & differentiation, 49(2), 121-129, doi: 10.1111/j.1440- 169X.2007.00914.x.
Elasaeidi F., Bemben M. A., Zhao X.-F., Goldman D. (2014). Jak/Stat signaling stimulates zebrafish optic nerve regeneration and overcomes the inhibitory actions of Socs3 and Sfpq. The Journal of Neuroscience, 34(7), 2632-2644, doi: 10.1523/JNEUROSCI.3898-13.2014.
Filip S., Mokry J., Horacek J., English D. (2008). Stem cells and the phenomena of plasticity and diversity: a limiting property of carcinogenesis. Stem cells and development, 17(6), 1031-1038, doi: 10.1089/scd.2007.0234.
Fischer D., Leibinger M. (2012). Promoting optic nerve regeneration. Progress in retinal and eye research, 31(6), 688-701, doi: 10.1016/j.preteyeres.2012.06.005.
Fu M., Hu Y., Lan T., Guan K.-L., Luo T., Luo M. (2022). The Hippo signalling pathway and its implications in human health and diseases. Signal transduction and targeted therapy, 7(1), 376, doi: 10.1038/s41392-022-01191-9.
Garza-Garcia A. A., Driscoll P. C., Brockes J. P. (2010). Evidence for the local evolution of mechanisms underlying limb regeneration in salamanders. Integrative and comparative biology, 50(4), 528-535, doi: 10.1093/icb/icq022.
Gordon T. (2020). Peripheral Nerve Regeneration and Muscle Reinnervation. International journal of molecular sciences, 21(22), 8652, doi: 10.3390/ijms21228652.
Gut P., Verdin E. (2013). The nexus of chromatin regulation and intermediary metabolism. Nature, 502(7472), 489-498, doi: 10.1038/nature12752.
Halder G., Johnson R. L. (2011). Hippo signaling: growth control and beyond. Development, 138(1), 9-22, doi: 10.1242/dev.045500.
Hayashi S., Ochi H., Ogino H., Kawasumi A., Kamei Y., Tamura K., Yokoyama H. (2014). Transcriptional regulators in the Hippo signaling pathway control organ growth in Xenopus tadpole tail regeneration. Developmental biology, 396(1), 31- 41, doi: 10.1016/j.ydbio.2014.09.018.
Hayashi S., Yokoyama H., Tamura K. (2015). Roles of Hippo signaling pathway in size control of organ regeneration. Development, growth & differentiation, 57(4), 341-351, doi: 10.1111/dgd.12212.
Kolios G., Moodley Y. (2013). Introduction to stem cells and regenerative medicine. Respiration, 85(1), 3-10, doi: 10.1159/000345615.
Lee-Liu D., Méndez-Olivos E. E., Muñoz R., Larraín J. (2017). The African clawed frog Xenopus laevis: A model organism to study regeneration of the central nervous system. Neuroscience letters, 652, 82-93, doi: 10.1016/j.neulet.2016.09.054.
Lin T.-Y., Gerber T., Taniguchi-Sugiura Y., Murawala P., Hermann S., Grosser L., Shibata E., Treutlein B., Tanaka E. M. (2021). Fibroblast dedifferentiation as a determinant of successful regeneration. Developmental cell, 56(10), 1541-1551.e6, doi: 10.1016/j.devcel.2021.04.016.
Lodi D., Iannitti T., Palmieri B. (2011). Stem cells in clinical practice: applications and warnings. Journal of experimental & clinical cancer research, 30(1), 9, doi: 10.1186/1756-9966-30-9.
Maden M. (2018). The evolution of regeneration - where does that leave mammals? The international journal of developmental biology, 62(6-7-8), 369-372, doi: 10.1387/ijdb.180031mm.
Mitogawa K., Makanae A., Satoh A. (2018). Hyperinnervation improves Xenopus laevis limb regeneration. Developmental biology, 433(2), 276-286, doi: 10.1016/j.ydbio.2017.10.007.
Michalopoulos G. K., Bhushan B. (2021). Liver regeneration: biological and pathological mechanisms and implications. Nature reviews. Gastroenterology & hepatology, 18(1), 40-55, doi: 10.1038/s41575-020- 0342-4.
Mochii M., Taniguchi Y., Shikata I. (2007). Tail regeneration in the Xenopus tadpole. Development, growth & differentiation, 49(2), 155-161, doi: 10.1111/j.1440- 169X.2007.00912.x.
Muñoz R., Edwards-Faret G., Moreno M., Zuñiga N., Cline H., Larraín J. (2015). Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells. Developmental biology, 408(2), 229-243, doi: 10.1016/j.ydbio.2015.03.009.
Oviedo N. J., Beane W. (2009). Regeneration: The origin of cancer or a possible cure? Seminars in cell & developmental biology, 20(5), 557-564, doi: 10.1016/j.semcdb.2009.04.005.
Rubart M., Field L. J. (2006). Cardiac regeneration: repopulating the heart. Annual review of physiology, 68, 29-49, doi: 10.1146/annurev.physiol.68.040104.124530.
Sarig R., Tzahor E. (2017). The cancer paradigms of mammalian regeneration: can mammals regenerate as amphibians? Carcinogenesis, 38(4), 359-366, doi: 10.1093/carcin/bgw103.
Scalia F. (1976). The Optic Pathway of the Frog: Nuclear Organization and Connections. W: Kerkut G. A. (red.). Frog Neurobiology, Berlin i Heidelberg: Springer.
Suzuki S., Sasaki K., Fukazawa T., Kubo T. (2022). Xenopus laevis il11ra.L is an experimentally proven interleukin-11 receptor component that is required for tadpole tail regeneration. Scientific reports, 12(1), 1903, doi: 10.1038/s41598-022-05954-w.
Tanaka M., Kuriyama S., Itoh G., Kohyama A., Iwabuchi Y., Shibata H., Yashiro M., Aiba N. (2016). Identification of anti-cancer chemical compounds using Xenopus embryos. Cancer science, 107(6), 803- 811, doi: 10.1111/cas.12940.
Tapon N., Harvey K. F., Bell D. W., Wahrer D. C. R., Schiripo T. A., Haber D. A., Hariharan I. K. (2002). Salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell, 110(4), 467-478, doi: 10.1016/s0092-8674(02)00824-3.
Uygur A., Lee R. T. (2016). Mechanisms of Cardiac Regeneration. Developmental cell, 36(4), 362-374, doi: 10.1016/j.devcel.2016.01.018.
Whitworth G. B., Misaghi B. C., Rosenthal D. M., Mills E. A., Heinen D. J., Watson A. H., Ives C. W., Ali S. H., Bezold K., MarshArmstrong N., Watson F. L. (2017). Translational profiling of retinal ganglion cell optic nerve regeneration in Xenopus laevis. Developmental biology, 426(2), 360-373, doi: 10.1016/j.ydbio.2016.06.003.
Wijesekera L. C., Leigh P. N. (2009). Amyotrophic lateral sclerosis. Orphanet journal of rare diseases, 4, 3, doi: 10.1186/1750-1172-4-3.
Woodworth M. B., Greig L. C., Goldberg J. L. (2023). Intrinsic and Induced Neuronal Regeneration in the Mammalian Retina. Antioxidants & redox signaling, 39(16- 18), 1039-1052, doi: 10.1089/ars.2023.0309.
Yoshino J., Tochinai S. (2006). Functional regeneration of the olfactory bulb requires reconnection to the olfactory nerve in Xenopus larvae. Development, growth & differentiation, 48(1), 15-24, doi: 10.1111/j.1440-169X.2006.00840.x.
Yu H., Lu K., Zhu J., Wang J. (2017). Stem cell therapy for ischemic heart diseases. British medical bulletin, 121(1), 135-154, doi: 10.1093/bmb/ldw059.
Zhang D., Bauer A. S., Blazar P., Earp B. E. (2021). Three-Dimensional Printing in Hand Surgery. The journal of hand surgery, 46(11), 1016-1022, doi: 10.1016/j.jhsa.2021.05.028.
Zhang M., Chen Y., Xu H., Yang L., Yuan F., Li L., Xu Y., Chen Y., Zhang C., Lin G. (2018). Melanocortin Receptor 4 Signaling Regulates Vertebrate Limb Regeneration. Developmental cell, 46(4), 397-409.e5, doi: 10.1016/j.devcel.2018.07.021.
Źródła internetowe:
- https://files.poltransplant.org.pl/Biuletyn_2023_www.pdf [dostęp: październik 2024]
- https://clinicaltrials.gov/ [dostęp: październik.2024]