From enemies to the only hope: viruses as the last chance to fight multidrug resistance
DOI:
https://doi.org/10.26881/tutg.2025.2.01Słowa kluczowe:
bakteriofagi (fagi), terapia fagowa, antybiotyki, antybiotykooporność, bakterie wielolekooporneAbstrakt
Antybiotykooporność to zjawisko nabierania przez bakterie oporności na antybiotyki. Jest ono spowodowane nadmiernym wykorzystywaniem antybiotyków w medycynie, ale także w rolnictwie czy przemyśle. Z uwagi na rosnący problem oporności na antybiotyki niezbędne jest nowatorskie podejście do problemu. Jedną z możliwości jest zastosowanie bakteriofagów (wirusów atakujących bakterie) w celu kuracji chorób bakteryjnych. W artykule przedstawione zostaną najważniejsze kwestie związane z tym tematem, takie jak: cykl replikacyjny bakteriofagów, zalety i wady terapii fagowej oraz powody, dla których nie jest ona powszechnie stosowana.
Downloads
Bibliografia
Carlton, R.M. (1999). Phage therapy: past history and future prospects. Archives of Immunology and Therapy Experimental (Warsz), 47(5), pp. 267–274. PMID: 10604231.
Chiang, Y.N., Penadés, J.R., Chen, J. (2019). Genetic transduction by phages and chromosomal islands: The new and noncanonical. PLoS Pathogens, 15(8), https://doi.org/10.1371/journal.ppat.1007878.
Duckworth, D.H., Gulig, P.A. (2002). Bacteriophages: potential treatment for bacterial infections. BioDrugs, 16(1), pp. 57–62. https://doi.org/10.2165/00063030-200216010-00006. PMID: 11909002.
Fernández, L., Gutiérrez, D., García, P., Rodríguez, A. (2019). The Perfect Bacteriophage for Therapeutic Applications—A Quick Guide. Antibiotics (Basel), 8(3), 126. https://doi.org/10.3390/antibiotics8030126. PMID: 31443585; PMCID: PMC6783975.
Heshmati, B., Esmaeili Gouvarchin Galeh, H., Dorostkar, R. (2021). A review on the applications of Listex™ P100 bacteriophage. Journal of Applied Biotechnology Reports, 8(4), pp. 332–336. https://doi.org/10.30491/jabr.2020.248851.1286.
Hyman, P. (2019). Phages for Phage Therapy: Isolation, Characterization, and Host Range Breadth. Pharmaceuticals (Basel), 12(1), 35. https://doi.org/10.3390/ph12010035. PMID: 30862020; PMCID: PMC6469166.
Langdon, A., Crook, N., Dantas, G. (2016). The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Medicine, 8(1), p. 39. https://doi.org/10.1186/s13073-016-0294-z. PMID: 27074706; PMCID: PMC4831151.
Leid, J.G., Shirtliff, M.E., Costerton, J.W., Stoodley, P. (2002). Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infection and Immunity, 70(11), pp. 6339–6345. https://doi.org/10.1128/IAI.70.11.6339-6345.2002. PMID: 12379713; PMCID: PMC130380.
Naureen, Z., Dautaj, A., Anpilogov, K., Camilleri, G., Dhuli, K., Tanzi, B., Maltese, P.E., Cristofoli, F., De Antoni, L., Beccari, T., Dundar, M., Bertelli, M. (2020). Bacteriophages presence in nature and their role in the natural selection of bacterial populations. Acta Biomedica, 91(13-S), e2020024. https://doi.org/10.23750/abm.v91i13-S.10819. PMID: 33170167; PMCID: PMC8023132.
O’Neill, J. (2016). Tackling drug-resistant infections globally: Final report and recommendations. Review on Antimicrobial Resistance. Available at: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf [Accessed 12 Apr. 2025].
Paulson, J.A., Zaoutis, T.E.; Council on Environmental Health; Committee on Infectious Diseases. (2015). Nontherapeutic use of antimicrobial agents in animal agriculture: Implications for pediatrics. Pediatrics, 136(6), pp. e1670–e1677. https://doi.org/10.1542/peds.2015-3630. PMID: 26574594.
Saha, D., Mukherjee, R. (2019). Ameliorating the antimicrobial resistance crisis: Phage therapy. IUBMB Life, 71(7), pp. 781–790. https://doi.org/10.1002/iub.2010. PMID: 30674079.
Stobnicka-Kupiec, A. (2024). Bakteriofagi jako czynniki biokontroli populacji niepożądanych bakterii. Biotechnologia i Przemysł, 10(22). https://doi.org/10.54215/BP.2024.10.22.Stobnicka-Kupiec.
Sulakvelidze, A., Alavidze, Z., Morris, J.G. Jr. (2001). Bacteriophage therapy. Antimicrobial Agents and Chemotherapy, 45(3), pp. 649–659. https://doi.org/10.1128/AAC.45.3.649-659.2001. PMID: 11181338; PMCID: PMC90351.
Totté, J.E.E., van Doorn, M.B., Pasmans, S.G.M.A. (2017). Successful treatment of chronic Staphylococcus aureus-related dermatoses with the topical endolysin Staphefekt SA.100: A report of 3 cases. Case Reports in Dermatology, 9(2), pp. 19–25. https://doi.org/10.1159/000473872. PMID: 28611631; PMCID: PMC5465516.
Verbeken, G., De Vos, D., Vaneechoutte, M., Merabishvili, M., Zizi, M., Pirnay, J.P. (2007). European regulatory conundrum of phage therapy. Future Microbiology, 2(5), pp. 485–491. https://doi.org/10.2217/17460913.2.5.485 PMID: 17927471.
Xu, L., Li, J., Wu, W., Wu, X., Ren, J. (2024). Klebsiella pneumoniae capsular polysaccharide: Mechanism in regulation of synthesis, virulence, and pathogenicity. Virulence, 15(1), 2439509. https://doi.org/10.1080/21505594.2024.2439509. PMID: 39668724; PMCID: PMC11649230.
Zhang, S., Chen, D.C. (2019). Facing a new challenge: the adverse effects of antibiotics on gut microbiota and host immunity. Chinese Medical Journal (Engl), 132(10), pp. 1135–1138. https://doi.org/10.1097/CM9.0000000000000245. PMID: 30973451; PMCID: PMC6511407.
Internet sources:
[1] Eliava BioPreparations, 2024. Phago-Staph Bacteriophage Preparation [online], https://phage.ge/en/products/phagostaph [Accessed 04 Oct. 2025].
[2] Atlas Biologiczny, 2017. Wirusy (Viruses) [online], https://atlasbiologiczny.blogspot.com/2017/04/wirusy.html [Accessed 04 Oct. 2025]
Uniwersyteckie Czasopisma Naukowe