Nanowaste, or risks associated with the presence of nanoparticles in the environment – effects on selected living organisms
DOI:
https://doi.org/10.26881/prog.2023.12.04Keywords:
nanoparticles, environment, toxicity, plants, animalsAbstract
Nanoparticles are materials characterized by their tiny size (less than 100 nm, at least in one dimension), and distinctive optical, chemical and electrical properties. Many metallic nanoparticles exhibit toxicity to pathogens (bacteria, viruses, fungi). Nowadays, these materials are widely used in catalyzing chemical reactions, cosmetics as antibacterial agents, and medicine as drug transporters. Due to the very small size of nanoparticles, they can easily get into the environment causing bioaccumulation in plants and living organisms. The paper presents the problem of toxicity and adverse effects of nanoparticles in the environment and their impact on plants and animals (vertebrates).
Downloads
References
Ahmad A., Hashmi S.S., Palma J.M., Corpas F.J., 2022, Influence of metallic, metallic oxide, and organic nanoparticles on plant physiology, „Chemosphere”, Vol. 290, doi: 10.1016/J.CHEMOSPHERE. 2021.133329.
Almutairi Z., Alharbi A., 2015, Effect of Silver Nanoparticles on Seed Germination of Crop Plants, „Journal of Advances in Agriculture”, Vol. 4, No. 1, doi: 10.24297/JAA.V4I1.4295.
Augustine R., Hasan A., Primavera R., Wilson R.J., Thakor A.S., Kevadiya B.D., 2020, Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components, „Materials Today Communications”,Vol. 25, doi: 10.1016/J.MTCOMM.2020.101692.
Austin C.A., Umbreit T.H., Brown K.M., Barber D.S., Dair B.J., Francke-Carrol S., Feswick A., Saint- -Luis M.A, Hikawa H., Siebein K.N., Goering P.L, 2012, Distribution of silver nanoparticles in pregnant mice and developing embryos, „Nanotoxicology”, Vol. 6, No. 8, doi: 10.3109/17435390.2011.626539.
Bar-Ilan O., Albrecht R.M, Fako V.E., Furgeson D.Y., 2009, Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos, „Small (Weinheim an der Bergstrasse, Germany)”, Vol. 5, No.16, doi: 10.1002/SMLL.200801716.
Bundschuh M., Filser J., Lüderwald S., McKee M., Metreveli G., Schaumann G.E., Schulz R., Wagner S., 2018, Nanoparticles in the environment: where do we come from, where do we go to?, „Environmental Sciences Europe”, Vol. 30, No.1, doi: 10.1186/S12302-018-0132-6.
Chen, H., 2018, Metal based nanoparticles in agricultural system: behavior, transport, and interaction with plants, „Chmical Speciation & Bioavailability”, Vol. 30, No. 1, doi: 10.1080/09542299.2018.1520050.
Clemente Z., Castro V.L.S.S., Moura M.A.M., Jonsson C.M., Fraceto L.F., 2014, Toxicity assessment of TiO2 nanoparticles in zebrafish embryos under different exposure conditions, „Aquatic Toxicology”, Vol. 147, doi: 10.1016/J.AQUATOX.2013.12.024.
Corredor E., Testillano P.S., Coronado M.J., González-Melendi P., Fernández-Pacheco R., Marquina C., Ibaraa M.R., de la Fuente J.M., Rubilaes D., Pérez-de-Luque A., Risueño M.C., 2009, Nanoparticle penetration and transport in living pumpkin plants: In situ subcellular identification, „BMC Plant Biology”, Vol. 9, No. 1, doi: 10.1186/1471-2229-9-45/FIGURES/9.
Feizi H., Kamali M., Jafari L., Moghaddam P.R., 2013, Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill), „Chemosphere”, Vol. 91, No. 4, doi: 10.1016/J.CHEMOSPHERE.2012.12.012.
Fraceto L.F., Grillo R., de Medeiros G.A., Scognamiglio V., Rea G., Bartolucci C., 2016, Nanotechnology in agriculture: Which innovation potential does it have?, „Frontiers in Environmental Science”, Vol. 4, doi: 10.3389/FENVS.2016.00020/ABSTRACT.
Gangadoo S., Stanley D., Hughes R.J., Moore R.J., Chapman J., 2016, Nanoparticles in feed: Progress and prospects in poultry research, „Trends in Food Science & Technology”, Vol. 58, doi: 10.1016/J. TIFS.2016.10.013.
Gautam R., Yang S.J., Maharjan A., Jo J.H., Acharya M., Heo Y., Kim C.Y., 2021, Prediction of Skin Sensitization Potential of Silver and Zinc Oxide Nanoparticles Through the Human Cell Line Activation Test, „Frontiers in Toxicology”, Vol. 3, doi: 10.3389/FTOX.2021.649666.
Hosam E.A.F., Hamuda H., 2015, Influence of Engineered Metal Oxide Nanoparticles on Seed Germination, Seedling Development and Chlorophyll Content, „Óbuda University e-Bulletin”, Vol. 5 No. 1.
Harper S.L., Carriere J.L., Miller J.M., Hutchison J.E., Maddux B.L.S., Tanguay R.L., 2011, Systematic Evaluation of Nanomaterial Toxicity: Utility of Standardized Materials and Rapid Assays, „ACS Nano”, Vol. 5, No. 6, doi: 10.1021/NN200546K.
Den Hertog J., 2005, Chemical genetics: Drug screens in Zebrafish, „Bioscience reports”, Vol. 25, No. 5–6, doi: 10.1007/S10540-005-2891-8.
Hou J., Wu Y., Li X., Wei B., Li S., Wang X., 2018, Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms, „Chemosphere”, Vol. 193, doi: 10.1016/J.CHEMOSPHERE.2017.11.077.
Jia H.R., Zhu Y.X., Duan Q.Y., Chen Z., Wu F.G., 2019Nanomaterials meet zebrafish: Toxicity evaluation and drug delivery applications, „Journal of Controlled Release”, Vol. 311–312, doi: 10.1016/J. JCONREL.2019.08.022.
Jia X., Wang S., Zhou L., Sun L., 2017, The Potential Liver, Brain, and Embryo Toxicity of Titanium Dioxide Nanoparticles on Mice, „Nanoscale Research Letters”, Vol. 12, doi: 10.1186/S11671-017-2242-2.
Johnston H.J., Verdon R., Gillies S., Brown D.M., Fernandes T.F., Henry T.B., Rossi A.G., Tran L., Tucker C., Tyler C.R., Stone V., 2018, Adoption of in vitro systems and zebrafish embryos as alternative models for reducing rodent use in assessments of immunological and oxidative stress responses to nanomaterials, „Critical Reviews in Toxicology”, Vol. 48, No. 3, doi: 10.1080/10408444.2017.1404965.
Khan I., Saeed K., Khan I., 2019, Nanoparticles: Properties, applications and toxicities, „Arabian Journal of Chemistry”, Vol. 12, No. 7, doi: 10.1016/j.arabjc.2017.05.011.
Khan M., Khan M.S.A., Borah K.K., Goswami Y., Hakeem K.R., Chakrabartty I., 2021, The potential exposure and hazards of metal-based nanoparticles on plants and environment, with special emphasis on ZnO NPs, TiO2 NPs, and AgNPs: A review, „Environmental Advances”, Vol. 6, doi: 10.1016/J. ENVADV.2021.100128.
Khodakovskaya M., Dervishi E., Mahmood M., Xu Y., Li Z., Watanabe F., Biris A.S., 2009, Carbon Nanotubes Are Able To Penetrate Plant Seed Coat and Dramatically Affect Seed Germination and Plant Growth, „ACS Nano”, Vol. 3, No. 10, doi: 10.1021/NN900887M.
Kim K.T., Zaikova T., Hutchison J.E., Tanguay R.L., 2013, Gold nanoparticles disrupt zebrafish eye development and pigmentation, „Toxicological Sciences: an Official Journal of the Society of Toxicology”, Vol. 133, No. 2, doi: 10.1093/TOXSCI/KFT081.
Li M., Ahammed G.J., Li C., Bao X., Yu J., Huang C., Yin H., Zhou J., 2016, Brassinosteroid Ameliorates Zinc Oxide Nanoparticles-Induced Oxidative Stress by Improving Antioxidant Potential and Redox Homeostasis in Tomato Seedling, „Frontiers in Plant Science”, Vol. 7, doi: 10.3389/FPLS.2016.00615/ BIBTEX.
Luo Z., Li Z., Xie Z., Sokolova I. M., Song L., Peijnenburg W.J.G.M., Hu M., Wang Y., 2020, Rethinking Nano-TiO2 Safety: Overview of Toxic Effects in Humans and Aquatic Animals, „Small”, Vol. 16, No. 36, doi: 10.1002/SMLL.202002019.
Mazumdar H., Ahmed G.U., 2011, Synthesis of silver nanoparticles and its adverse effect on seed germinations in Oryza sativa, Vigna radiate and Brassica campestris, „International Journal of Advanced Biotechnology and Research”, Vol. 2.
Mukherjee A., Sun Y., Morelius E., Tamez C., Bonydopadhyay S., Niu G., White J.C., Peralta-Videa J.C., Garedea-Torresdey J.L., 2016, Differential toxicity of bare and hybrid ZnO nanoparticles in Green pea (Pisum sativum L.): A life cycle study, „Frontiers in Plant Science”, Vol. 6, doi: 10.3389/FPLS.2015.01242.
Rajput V., Minkina T., Mazarji M., Shende S., Sushkova S., Mandzhieva S., Burachevskaya M., Chaplygin V., Singh A., Jatav H., 2020, Accumulation of nanoparticles in the soil-plant systems and their effects on human health, „Annals of Agricultural Sciences”, Vol. 65, No. 2, doi: 10.1016/J.AOAS.2020.08.001.
Raliya R., Nair R., Chavalmane S., Wang W.N., Biswas P., Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant, „Metallomics: Integrated Biometal Science”, Vol. 7, No. 12, doi: 10.1039/ C5MT00168D.
Rashid M.M., Tavčer P.F., Tomšič B., 2021, Influence of Titanium Dioxide Nanoparticles on Human Health and the Environment, „Nanomaterials”, Vol. 11, No. 9(2354), doi: 10.3390/NANO11092354.
Scholz S., Fisher S., Gündel U., Küster E., Luckenbach T., Voelker D., 2008, The zebrafish embryo model in environmental risk assessment—applications beyond acute toxicity testing, „Environmental Science and Pollution Research International”, Vol. 15, No. 5, doi: 10.1007/S11356-008-0018-Z.
Senut M.C., Zhang Y., Liu F., Sen A., Ruden D.M., Mao G., 2016, Size-dependent Toxicity of Gold Nanoparticles on Human Embryonic Stem Cells and Their Neural Derivatives, „Small”, Vol. 12, No. 5, doi: 10.1002/SMLL.201502346.
Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., Bakhori S.K.M., Hasan H., Mohamad D., 2015, Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism, „Nano-micro letters”, Vol. 7, No. 3, doi: 10.1007/S40820-015-0040-X.
Reshma V.G., Mohanan P.V., 2017, Cellular interactions of zinc oxide nanoparticles with human embryonic kidney (HEK 293) cells, „Colloids and Surfaces B: Biointerfaces”, doi: 10.1016/J.COLSURFB.2017.05.069.
Wang W., Paschalidis K., Feng J.C., Song J., Liu J. H., 2019 Polyamine catabolism in plants: A universal process with diverse functions, „Frontiers in Plant Science”, Vol. 10, doi: 10.3389/FPLS.2019.00561.
Yasur J., Rani P.U., 2013, Environmental effects of nanosilver: Impact on castor seed germination, seedling growth, and plant physiology, „Environmental Science and Pollution Research”, Vol. 20, No. 12, doi: 10.1007/S11356-013-1798-3.