Modelowanie czynników wpływających na wydajność pracowników bibliotek z użyciem metod uczenia maszynowego

Autor

  • Katarzyna Topolska Politechnika Wrocławska

Słowa kluczowe:

bibliotekarze, zmęczenie, biometryka, uczenie maszynowe, klasyfikacja

Abstrakt

Celem badań przedstawionych w artykule jest opracowanie skutecznego systemu klasyfikacji poziomu zmęczenia pracowników bibliotek na podstawie sygnałów biometrycznych i behawioralnych. System ten ma umożliwiać wczesne wykrywanie pięciu poziomów zmęczenia, od braku zmęczenia po stan uniemożliwiający efektywną pracę. W badaniu porównano skuteczność różnych algorytmów uczenia maszynowego. Uzyskane wyniki posłużą do stworzenia inteligentnych narzędzi wspierających zarządzanie dobrostanem pracowników. 

Downloads

Download data is not yet available.

Bibliografia

ADÃO MARTINS Neusa R., ANNAHEIM Simon, SPENGLER Christina M., ROSSI René M. Fatigue Monitoring Through Wearables: A State-of-the-Art Review. Frontiers in Psychology. 2021, vol. 12, s. 1-25. ISSN 1664-1078.

ÅKERSTEDT Torbjörn, GILLBERG Mats. Subjective and Objective Sleepiness in the Active Individual. International Journal of Neuroscience. 1990, nr 1-2, s. 29-37. ISSN 0020-7454.

AL-LIBAWY Hilal, AL-ATABY Ali, AL-NUAIMY Waleed, AL-TAEE Majid A. HRV-based operator fatigue analysis and classification using wearable sensors. In 2016 13th International Multi-Conference on Systems, Signals & Devices (SSD). Leipzig: IEEE, s. 268-273, 2016.

ALMANSOORI Noura, ALDULAIJAN Samah, ALTHANI Sara, HASSAN Noha M., NDIAYE Malick, AWAD Mahmoud. Manual spray painting process optimization using Taguchi robust design. International Journal of Quality & Reliability Management. 2020, nr 1, s. 46-67. ISSN 0265-671X.

BJÖRING Gunnar, HÄGG Göran. Musculoskeletal exposure of manual spray painting in the woodworking industry – an ergonomic study on painters. International Journal of Industrial Ergonomics. 2000, nr 6, s. 603-614. ISSN 0169-8141.

FERNANDEZ SCHRUNDER Alejandro D., HUANG Yu-Kai, RODRIGUEZ Saul, RUSU Ana. A Real-Time Muscle Fatigue Detection System Based on Multifrequency EIM and sEMG for Effective NMES. IEEE Sensors Journal. 2024, nr 14, s. 22553-22564. ISSN 1558-1748.

FU Rongrong, WANG Hong, ZHAO Wenbo. Dynamic driver fatigue detection using hidden Markov model in real driving condition. Expert Systems with Applications. 2016, vol. 63, s. 397-411. ISSN 0957-4174.

GARCIA Salvador, HERRERA Francisco. An Extension on “Statistical Comparisons of Classifiers over Multiple Data Sets” for all Pairwise Comparisons. Journal of Machine Learning Research. 2008, nr 9, s. 2677-2694. ISSN 1532-4435.

GLADWELL Peter, HARLAND Matthew, ADRISSI Aysha, KERSHAW Saskia, DURES Emma. Exploring the content validity of the Chalder Fatigue Scale using cognitive interviewing in an ME/CFS population. Fatigue: Biomedicine, Health & Behavior. 2024, nr 3, s. 217-237. ISSN 2164-1846.

HART Sandra G., STAVELAND Lovell E. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. Advances in Psychology. 1988, vol. 52, s. 139-183. ISSN 0166-4115.

HAUS Erhard, SMOLENSKY Michael. Biological clocks and shift work: circadian dysregulation and potential long-term effects. Cancer Causes & Control. 2006, nr 4, s. 489-500. ISSN 1573-7225.

HU Xinyun, LODEWIJKS Gabriel. Detecting fatigue in car drivers and aircraft pilots by using non-invasive measures: The value of differentiation of sleepiness and mental fatigue. Journal of Safety Research. 2020, t. 72, s. 173-187. ISSN 0022-4375.

HUANG Shitong, LI Ja, ZHANG Pengzhu, ZHANG Weiqiang. Detection of mental fatigue state with wearable ECG devices. International Journal of Medical Informatics. 2018, t. 119, s. 39-46. ISSN 1872-8243.

ISHII Akira, TANAKA Masaaki, WATANABE Yasuyoshi. Neural mechanisms of mental fatigue. Reviews in the Neurosciences. 2014, nr 4, s. 469-479. ISSN 0334-1763.

JACQUET Thomas, POULIN-CHARRONNAT Bénédicte, BARD Patrick, LEPERS Romuald. Persistence of Mental Fatigue on Motor Control. Frontiers in Psychology. 2021, vol. 11, s. 1-14. ISSN 1664-1078.

KO Li-Wei i in. Single channel wireless EEG device for real-time fatigue level detection. In 2015 International Joint Conference on Neural Networks (IJCNN). Killarney: IEEE, s. 1-5, 2015. ISSN 2161-4393.

LEE Hyeonjeong, LEE Jaewon, SHIN Miyoung. Using Wearable ECG/PPG Sensors for Driver Drowsiness Detection Based on Distinguishable Pattern of Recurrence Plots. Electronics. 2019, nr 2, s. 1-15. ISSN 2079-9292.

LEE Jong-Seok, BAE You-Suk, LEE Wongok, LEE Hyunsuk, YU Jinkeun, CHOI Jong-Pil. Emotion and Fatigue Monitoring Using Wearable Devices. In HWANG Seong Oun, TAN Syh Yuan, FRANKLIN Bien (red.). Proceedings of the Sixth International Conference on Green and Human Information Technology. Singapore: Springer, s. 91-96, 2019. ISBN 978-981-13-0311-1.

LI Jue i in. Identification and classification of construction equipment operators’ mental fatigue using wearable eye-tracking technology. Automation in Construction. 2020, vol. 109. ISSN 0926-5805.

LÓPEZ Victoria, FERNÁNDEZ Alberto, GARCÍA Salvador, PALADE Vasile, HERRERA Francisco. An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Information Sciences. 2013, vol. 250, s. 113-141. ISSN 0020-0255.

LUGER Tessy, MAHER Christopher G., RIEGER Monika A., STEINHILBER Benjamin. Work-break schedules for preventing musculoskeletal symptoms and disorders in healthy workers. Cochrane Database of Systematic Reviews. 2019, nr 7. ISSN 1469-493X.

MARKATOU Marianthi, TIAN Hong, BISWAS Shameek, HRIPCSAK George. Analysis of variance of cross-validation estimators of the generalization error. Journal of Machine Learning Research. 2005, vol. 6, s. 1127-1168. ISSN 1127-1168.

MEAULEY Edward, COURNEYA Kerry S. The Subjective Exercise Experiences Scale (SEES): Development and Preliminary Validation. Journal of Sport and Exercise Psychology. 1994, nr 2, s. 163-177. ISSN 1543-2904.

NI Zhiqiang, SUN Fangmin, LI Ye. Heart Rate Variability-Based Subjective Physical Fatigue Assessment. Sensors. 2022, nr 9, s. 1-15, ISSN 1424-8220.

NIWA Shinji, YUKI Mori, NORO Tetsushi, SHIOYA Shunsuke, INOUE Kazutaka. A Wearable Device for Traffic Safety – A Study on Estimating Drowsiness with Eyewear. In JINS MEME, SAE Technical Paper. 2016. ISSN 0148-7191.

REN Ping. Cognitive Fatigue in Repetitive Learning Task. Techniques in Neurosurgery and Neurology. 2018, nr 1. ISSN 2637-7748.

ROBERTSON Edwin M. Skill Memory: Mind the Ever-Decreasing Gap for Offline Processing. Current Biology. 2019, nr 8, s. R287–R289. ISSN 0960-9822.

SEDIGHI MAMAN Zahra, CHEN Ying-Ju, BAGHDADI Amir, LOMBARDO Seamus, CAVUOTO Lora A., MEGAHED Fadel M. A data analytic framework for physical fatigue management using wearable sensors. Expert Systems with Applications. 2020, vol. 155. ISSN 0957-4174.

SHAHID Azmeh, WILKINSON Kate, MARCU Shai, SHAPIRO Colin M. Stanford Sleepiness Scale (SSS). In SHAHID Azmeh, WILKINSON Kate, MARCU Shai, SHAPIRO Colin M. (red.). STOP, THAT and One Hundred Other Sleep Scales. New York: Springer, s. 369-370, 2011. ISBN 978-1-4419-9892-7.

TAYLOR Janet L. Motor Control and Motor Learning Under Fatigue Conditions. In GOLLHOFER Albert, TAUBE Wolfgang, NIELSEN Jens Bo (red.). Routledge Handbook of Motor Control and Motor Learning. London: Routledge, 2013, s. 353-383. ISBN 978-0-203-13274-6.

TORRES Yaniel, NADEAU Sylvie, LANDAU Kurt. Evaluation of Fatigue and Workload among Workers Conducting Complex Manual Assembly in Manufacturing. IISE Transactions on Occupational Ergonomics and Human Factors. 2021, nr 1, s. 49-63. ISSN 2472-5846.

VARANDAS Rui, LIMA Rodrigo, BERMÚDEZ I BADIA Sergi, SILVA Hugo, GAMBOA Hugo. Automatic Cognitive Fatigue Detection Using Wearable fNIRS and Machine Learning. Sensors. 2022, nr 11, s. 1-14. ISSN 1424-8220.

WAMSLEY Erin J. Memory Consolidation during Waking Rest. Trends in Cognitive Sciences. 2019, nr 3, s. 171-173. ISSN 1364-6613.

WOJCIECHOWSKA Maja (red.). Zarządzanie biblioteką. Warszawa: Wydawnictwo Naukowe i Edukacyjne SBP, 2019. ISBN 978-83-65741-26-4.

ZENG Zhikang i in. Nonintrusive Monitoring of Mental Fatigue Status Using Epidermal Electronic Systems and Machine-Learning Algorithms. ACS Sensors. 2020, nr 5, s. 1305-1313. ISSN 2379-3694.

ZHANG Ming, CHUNQUAN Li, YULING Shang, HUANG Hongyan, ZHU Wangchun, LIU Yujia. A task scheduling model integrating micro-breaks for optimisation of job-cycle time in human-robot collaborative assembly cells. International Journal of Production Research. 2022, nr 15, s. 4766-4777. ISSN 0020-7543.

ZHANG Yuxin, CHEN Yiqiang, PAN Zhiwen. A Deep Temporal Model for Mental Fatigue Detection. 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Miyazaki: IEEE, 2018, s. 1879-1884. ISBN 978-1-5386-6650-0.

Pobrania

Opublikowane

2024-12-16

Jak cytować

Topolska, K. (2024). Modelowanie czynników wpływających na wydajność pracowników bibliotek z użyciem metod uczenia maszynowego . Zarządzanie Biblioteką, (1(16), 9–20. Pobrano z https://czasopisma.bg.ug.edu.pl/index.php/ZB/article/view/12744

Numer

Dział

Badania i wizje