Molekularny system kontroli jakości, czyli jak białka wychodzą na prostą (zwiniętą)?
DOI:
https://doi.org/10.26881/tutg.2022.2.02Słowa kluczowe:
białka szoku termicznego, fałdowanie białek, choroby neurodegeneracyjne, nowotworyDownloads
Bibliografia
Abildgaard, A.B., Gersing, S.K., Larsen-Ledet, S., Nielsen, S.V., Stein, A., Lindorff-Larsen, K., Hartmann-Petersen, R., 2020. Co-chaperones in targeting and delivery of misfolded proteins to the 26s proteasome, Biomolecules, 10(8), pp. 1–24. doi: 10.3390/biom10081141.
Anfinsen, C. B., 1972. The formation and stabilization of protein structure, The Biochemical journal, 128(4), pp. 737–749. doi: 10.1042/BJ1280737.
Balchin, D., Hayer-Hartl, M., Hartl, F. U., 2016. In vivo aspects of protein folding and quality control, Science, 353(6294). doi: 10.1126/science.aac4354.
Bloch, O., Crane, C.A., Fuks, Y., Kaur, R., Aghi, M.K., Berger, M.S., Butowski, N.A., Chang, S.M., Clarke, J.L., McDermott, M.W., Prados, M.D., Sloan, A.E., Bruce, J.N., Parsa, A.T., 2014. Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, single-arm trial, Neuro-oncology, 16(2), pp. 274–279. doi: 10.1093/neuonc/not203.
Chamera, T., Kłosowska, A., Janta, A., Wyszkowski, H., Obuchowski, I., Gumowski, K., Liberek, K., 2019. Selective Hsp70-Dependent Docking of Hsp104 to Protein Aggregates Protects the Cell from the Toxicity of the Disaggregase’, Journal of Molecular Biology, 431(11), pp. 2180–2196. doi: 10.1016/j.jmb.2019.04.014.
Fatima, K., Naqvi, F., Younas, H., 2021. A Review: Molecular Chaperone-mediated Folding, Unfolding and Disaggregation of Expressed Recombinant Proteins, Cell Biochemistry and Biophysics. Springer, 79(2), pp. 153–174. doi: 10.1007/S12013-021-00970-5.
Genest, O., Wickner, S., Doyle, S. M., 2019. Hsp90 and Hsp70 chaperones: Collaborators in protein remodeling, Journal of Biological Chemistry. American Society for Biochemistry and Molecular Biology Inc., 294(6), pp. 2109–2120. doi: 10.1074/JBC.REV118.002806.
Guyonnet, B., Egge, N. and Cornwall, G. A., 2014. Functional Amyloids in the Mouse Sperm Acrosome, Molecular and Cellular Biology. American Society for Microbiology, 34(14), pp. 2624–2634. doi: 10.1128/MCB.00073-14.
Jackson, M. P., Hewitt, E. W., 2017. Why are functional amyloids non‐toxic in humans?, Biomolecules. MDPI AG, 7(4). doi: 10.3390/BIOM7040071.
Jahn, T. R., Radford, S. E., 2005. The Yin and Yang of protein folding, FEBS Journal, 272(23), pp. 5962–5970. doi: 10.1111/J.1742-4658.2005.05021.X.
Janowska, M.K., Baughman, H. E.R., Woods, Ch.N, Klevit, R.E., 2019. Mechanisms of small heat shock proteins, Cold Spring Harbor Perspectives in Biology. Cold Spring Harbor Laboratory Press, 11(10). doi: 10.1101/CSHPERSPECT.A034025.
Joly, E.C., Tremblay, E., Tanguay, R.M., Wu, Y., Bibor-Hardy, V., 1994. TRiC-P5, a novel TCP1-related protein, is localized in the cytoplasm and in the nuclear matrix, Journal of cell science, 107 ( Pt 10), pp. 2851–2859. doi: 10.1242/jcs.107.10.2851.
Kumar, S. J., Stokes, J., Singh, U. P., Scissum Gunn, K., Acharya, A., Manne, U., Mishra, M,. 2016. ‘Targeting Hsp70: A possible therapy for cancer, Cancer Letters. Elsevier Ireland Ltd, 374(1), pp. 156–166. doi: 10.1016/J.CANLET.2016.01.056.
Levkovich, S. A., Gazit, E., Laor Bar-Yosef, D., 2021. Two Decades of Studying Functional Amyloids in Microorganisms, Trends in Microbiology, 29(3), pp. 251–265. doi: https://doi.org/10.1016/j.tim.2020.09.005.
Rappa, F., Farina, F., Zummo, G., David, S., Campanella, C., Carini, F., Tomasello, G., Damiani, P., Cappello, F., Conway de Macario, E. and Macario, A.J.L., 2012. HSP-Molecular Chaperones in Cancer Biogenesis and Tumor Therapy: An Overview, Anticancer Research, 32(12), pp. 5139 LP – 5150. Available at: http://ar.iiarjournals.org/content/32/12/5139.abstract.
Reis, S. D., Pinho, B. R., Oliveira, J. M. A., 2017. Modulation of Molecular Chaperones in Huntington’s Disease and Other Polyglutamine Disorders, Molecular Neurobiology. Molecular Neurobiology, 54(8), pp. 5829–5854. doi: 10.1007/s12035-016-0120-z.
Rosenzweig, R., Nillegoda, N.B., Mayer, M.P., Bukau, B., 2019. The Hsp70 chaperone network, Nature Reviews Molecular Cell Biology. Springer US, 20(11), pp. 665–680. doi: 10.1038/s41580-019-0133-3.
Sittler, A., Lurz, R., Lueder, G., Priller, J., Lehrach, H., Hayer-Hartl, MK., Hartl, F.U., Wanker, E.E., 2001. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease, Human molecular genetics. England, 10(12), pp. 1307–1315. doi: 10.1093/hmg/10.12.1307.
Soto, C., 2003. Unfolding the role of protein misfolding in neurodegenerative diseases, Nature Reviews Neuroscience, 4(1), pp. 49–60. doi: 10.1038/nrn1007.
Tabrizi, S. J. i in., 2019. Targeting Huntingtin Expression in Patients with Huntington’s Disease, New England Journal of Medicine. Massachusetts Medical Society, 380(24), pp. 2307–2316. doi: 10.1056/NEJMoa1900907.
Voet, D., Voet, J. G., 2004. Biochemistry. 3rd edn. Edited by D. Harris and P. Fitzgerald. Wiley.
Wan, O. W., Chung, K. K. K., 2012. The Role of Alpha-Synuclein Oligomerization and Aggregation in Cellular and Animal Models of Parkinson’s Disease, PLOS ONE. Public Library of Science, 7(6), p. e38545. Available at: https://doi.org/10.1371/journal.pone.0038545.
Wentink, A., Nussbaum-Krammer, C., Bukau, B., 2019. Modulation of amyloid states by molecular chaperones, Cold Spring Harbor Perspectives in Biology. Cold Spring Harbor Laboratory Press, 11(7). doi: 10.1101/CSHPERSPECT.A033969.
Wentink, A. S. i in., 2020. Molecular dissection of amyloid disaggregation by human HSP70’, Nature, 587:483–488. doi: 10.1038/s41586-020-2904-6587.
Yun, C.W., Kim, H.J., Lim, J.H., Lee, S.H., 2020. Heat Shock Proteins: Agents of Cancer Development and Therapeutic Targets in Anti-Cancer Therapy, Cells . doi: 10.3390/cells9010060.
Zorzi, E., Bonvini, P., 2011. Inducible Hsp70 in the Regulation of Cancer Cell Survival: Analysis of Chaperone Induction, Expression and Activity, Cancers, 3, pp. 3921–3956. doi: 10.3390/cancers3043921.