Przestrzenna lokalizacja dźwięku u osób z niepełnosprawnością wzrokową
Słowa kluczowe:
przestrzenna lokalizacja dźwięku, niewidomi, kształcenie słuchu, bezpieczeństwo, systemy elektroakustyczneAbstrakt
Autor w niniejszym artykule stara się ukazać nowe możliwości zastosowania i wykorzystania systemu elektroakustycznego w pracy z osobami z niepełnosprawnością wzrokową. Przedstawione możliwości wykorzystania systemu elektroakustycznego oraz specyficznych umiejętności słuchowych w życiu codziennym osób z niepełnosprawnością wzrokową jest celem nadrzędnym niniejszej pracy. Ukazane problemy stanowią wyłącznie wybrany fragment z szerokiego i wieloaspektowego obszaru w zakresie obcowania z dźwiękiem i kształcenia w zakresie oceny słuchowej dźwięku osób niewidomych. Właściwie podjęte kształcenie, wykorzystanie specyficznych umiejętności słuchowych osób z niepełnosprawnością wzrokową oraz zastosowanie specjalnego systemu elektroakustycznego, może wpłynąć na zwiększenie bezpieczeństwa wzmiankowanych osób w życiu codziennym w przestrzeni publicznej, jak i w pomieszczeniach zamkniętych.
Downloads
Bibliografia
Barrett K.C., Ashley R., Strait D.L., Kraus N. (2013), Art and science: how musical training shapes the brain, „Frontiers in Psychology”, vol. 4.
Begault D.R. (2000), 3-D Sound for Virtual Reality and Multimedia, California, National Aeronautics and Space Administration, NASA Ames Research Center.
Bogusz-Witczak E., Skrodzka E., Turkowska H. (2015), Influence of musical experience of blind and visually impaired young persons on performance in selected auditory tasks, „Archives of Acoustics”, vol. 40, no. 3.
Chartrand J.P., Belin P. (2006), Superior voice timbre processing in musicians, „Neuroscience Letters”, no. 405.
Chen Q., Zhang M., Zhou X. (2006), Spatial and nonspatial peripheral auditory processing in congenitally blind people, „NeuroReport”, vol. 17, no. 13.
Collignon O., Lassonde M., Lepore F., Bastien D., Veraart C. (2007), Functional cerebral reorganization for auditory spatial processing and auditory substitution of vision in early blind subjects, „Cerebral Cortex”, vol. 17, no. 2.
Gougoux F., Lepore F., Lassonde M., Voss P., Zatorre R.J., Belin P. (2004), Pitch discrimination in the early blind, „Nature”, no. 430.
Gougoux F., Zatorre R.J., Lassonde M., Voss P., Lepore F. (2005), A functional neuroimaging study of sound localization: Visual cortex activity predicts performance in early-blind individuals, „PLoS Biology”, vol. 3, issue 2.
Kilian M., Cichocka M. (2011), Muzykoterapia w rehabilitacji dzieci niewidomych i słabowidzących – założenia Teoretyczne (część 1), „Szkoła specjalna”, vol. 4(260).
Kraus N., Chandrasekaran B. (2010), Music training for the development of auditory skills, „Nature Reviews. Neuroscience”, vol. 11.
Leclerc Ch., Saint-Amour D., Lavoie M.E., Lassonde M., Lepore F. (2000) Brain functional reorganization in early blind humans revealed by auditory event-related potentials, „NeuroReport”, vol. 11, no. 3.
Lessard N., Pare´ M., Lepore F., Lassonde M. (1998), Early blind human subjects localize sound sources better than sighted subjects, „Nature”, no. 395.
Liotti M., Ryder K., Woldorff M.G. (1998), Auditory attention in the congenitally blind: where, when and what gets reorganized?, „NeuroReport”, vol. 9, no. 6.
Meyer M., Elmer S., Ringli M., Oechslin M. S., Baumann S., Jancke L. (2011), Long-term exposure to music enhances the sensitivity of the auditory system in children, „European Journal of Neuroscience”, vol. 33, issue 1.
Miśkiewicz P. (2017), Światowy Raport o Niepełnosprawności, Biuro WHO w Polsce, https://www.google.pl/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&ved=0ahUKEwiE6KiHlZ_RAhVMCMAKHSKcAZsQFghrMAc&url=http%3A%2F%2Fwww.pfron.org.pl%2Fdownload%2F1%2F4955%2FPaulinaMikiewicz.pdf&usg=AFQjCNETTB0tDcIbuf1OjGHlF56X_9vjQ&sig2=0NVtvOxWSE0lOhIT12ljfQ [dostęp: 2.07.2017].
Muchnik C., Efrati M., Nemeth E., Malin M., Hildesheimer M. (1991), Central auditory skills in blind and sighted subjects, „Scand Audiol”, no. 20.
Pantev C., Herholz S.C. (2011), Plasticity of the human auditory cortex related to musical training, „Neuroscience and Biobehavioral Reviews”, vol. 35, issue 10.
Parbery-Clark A., Skoe E., Kraus N. (2009b), Musical experience limits the degradative effects of background noise on the neural processing of sound, „Journal of Neuroscience”, vol. 29(45).
Parbery-Clark A., Skoe E., Lam C., Kraus N. (2009a), Musician enhancement for speech-in-noise, „Ear and Hearing”, vol. 30, no. 6.
Pec M., Bujacz M., Strumi³³o P. (2017), Head related transfer function measurement and processing for the purpose of creating a spatial sound environment, Jachranka Village, Signal Processing Symposium SPS 2007, http://www.eletel.p.lodz.pl/programy/naviton/index.php?option=com_docman&task=cat_view&gid=80&Itemid=43&mosmsg=You+are+trying+to+access+from+a+non-authorized+domain.+%28www.google.pl%29 [dostęp: 31.06.2017].
Pec M., Bujacz M., Strumiłło P., Materka A. (2008), Individual HRTF measurements for accurate obstacle sonification in an electronic travel aid for the blind, Proc. International Conference on Signals and Electronic Systems, Kraków.
Pec M., Bujacz M., Strumiłło P. (2007), Personalized head related transfer function measurement and verification through sound localization resolution, Proc. of the 15th European Signal Processing Conference (EUSIPCO 2007), Poznań.
Röder B., Stock O., Bien S., Neville H., Rösler F. (2002), Speech processing activates visual cortex in congenitally blind humans, „European Journal of Neuroscience”, vol. 16.
Röder B., Teder-Salejarvi W., Sterr A., Rösler F., Hillyard S.A., Neville H.J. (1999), Improved auditory spatial tuning in blind humans, „Nature”, no. 400.
Osiński A. (2013), Lokalizacja pozornych źródeł dźwięku w nagraniach binauralnych, [w:] Nowe trendy w naukach inżynieryjnych 4, t. 2, CreativeTime, Kraków. Sęk A.P. (2000), Percepcja dźwięku, „Forum psychologiczne”, t. 5, nr 1.
Strait D.L., Parbery-Clark A., Hittner E., Kraus N. (2012), Musical training during early childhood enhances the neural encoding of speech in noise, „Brain & Language”, no. 123.