NAPĘDZANIE CYFROWEJ TRANSFORMACJI BIZNESU W ZIELONYCH INTELIGENTNYCH MIASTACH ZA POMOCĄ SZTUCZNEJ INTELIGENCJI I PRZETWARZANIA W CHMURZE

Autor

DOI:

https://doi.org/10.26881/wg.2025.1.03

Słowa kluczowe:

głębokie uczenie, transformacja cyfrowa, zrównoważony rowój

Abstrakt

Cel. Cyfrowa transformacja biznesu w zielonych inteligentnych miastach jest klczowa ze względu na zmieniające się potrzeby mieszkańców i przedsiębiorstw oraz rosnące wymagania dotyczące zwiększania efektywności, poprawy jakości życia w miastach i ochrony środowiska. Celem niniejszej publikacji jest scharakteryzowanie kierunków rozwoju sztucznej inteligencji (AI) oraz chmury obliczeniowej wspierających transformację cyfrową i zrównoważony rozwój miast. Waro zauważyć, że w literaturze przedmiotu istnieje luka, gdyż brakuje jasnych pomysłów na efektywne wykorzystanie głębokiego uczenia opartego na sztucznych sieciach neuronowych (ANN) w chmurze.

Metody. Podstawowe metody badawcze obejmują krytyczną analizę literatury przedmiotu. Dodatkowo zastosowano modelowanie w celu symulacji wykorzystania głębokiego uczenia i chmury obliczeniowej w systemach zarządzania inteligentnymi miastami. Przeprowadzono intensywne eksperymenty obliczeniowe w celu analizy jakości rozwiązań, które zostały ocenione na podstawie zaproponowanych metod głębokiego uczenia z wykorzystaniem ANN opartych na długiej pamięci krótkoterminowej (LSTM).

Wyniki. Wyniki badań teoretycznych i eksperymentów numerycznych potwierdziły znaczący wkład AI i chmury obliczeniowej w zwiększenie efektywności miasta, poprawę jakości życia mieszkańców oraz ochronę środowiska naturalnego.

Downloads

Download data is not yet available.

Bibliografia

Aloqaily M, Elayan H, Guizani M (2023). C-HealthIER: a Cooperative Health Intelligent Emergency Response System for C-ITS. IEEE Trans Intell Transp Syst 24, pp. 2111–2121, https://doi.org/10.1109/TITS.2022.3141018

Aslam S., Rasool A., Jiang Q., Qu Q. (2021). LSTM based Model for Real-time Stock Market Prediction on Unexpected Incidents. RCAR, pp. 1149-1153, https://doi.org/10.1109/rcar52367.2021.9517625.

Awad M., Khanna R. (2015). Support Vector Regression: Efficient learning machines. Apress. Berkeley, CA, https://doi.org/10.1007/978-1-4302-5990-9_4.

Baesens B., Setiono R., Mues C., Vanthien J. (2003). Using neural network rule extraction and decision tables for credit-risk evaluation. “Management Science”, Vol. 49, No. 3, March, p. 317, https://doi.org/10.1287/mnsc.49.3.312.12739.

Balicka H., Balicki J. (2024). Quantum artificial intelligence in management of selected business processes. “Scientific Papers of Silesian University of Technology – Organization and Management Series”, No. 208., pp. 9-26, http://dx.doi.org/10.29119/1641-3466.2024.208.1.

Balicka H. (2023). Digital technologies in the accounting information system supporting decision-making processes. “Scientific Papers of Silesian University of Technology – Organization and Management Series, No. 169, pp.57-89, https://doi.org/10.29119/1641-3466.2023.169.4.

Balicka H. (2020). An influence of deep learning and the internet of things on directions of development of integrated financial systems supporting smart cities for green economy. Sopot University of Applied Sciences Journal, Space, Economy, Society, No. 17/I/2020, pp. 77-102, https://doi.org/10.23830/17/I/2020/77102.

Balicka H. (2019). Cloud computing and selected models of deep learning in banking. Sopot University of Applied Sciences Journal, Space, Economy, Society, No. 16/II/2019, pp. 57-88, https://doi.org/10.23830/16/II/2019/5788.

Balicki J., Balicka H., Dryja P. (2021). Big Data from Sensor Network via Internet of Things to Edge Deep Learning for Smart City. In: Saeed K., Dvorský J. (eds) Computer Information Systems and Industrial Management. CISIM 2021. Lecture Notes in Computer Science, vol 12883. Springer, Cham, https://doi.org/10.1007/978-3-030-84340-3_29.

Balicki J., Balicka H., Korłub W., Paluszak J., Zadroga M. (2014). Supercomputers to support economic processes with particular emphasis on the banking sector. “Contemporary Economy”, Vol. 4, Issue 5, p. 12. (In Polish).

Balicki J., Beringer M., Korłub W., Przybyłek P., Tyszka M., Zadroga M. (2015). Collective citizens’ behavior modelling with support of the Internet of Things and Big Data. “Proceedings of the 8th International Conference on Human-System-Interaction HSI’2015”, Warsaw, Poland, June 25-27, https://doi.org/10.1109/hsi.2015.7170644.

Balicki J., Korłub W., Paluszak J. (2015). Big data processing by volunteer computing supported by intelligent agents. Proc. of 6th International Conference, PReMI 2015, Warsaw, Poland, June 30 - July 3, 2015, Lecture Notes in Computer Science”, Vol. 9124, https://doi.org/10.1007/978-3-319-19941-2_26.

Balicki J., Korłub W., Tyszka M. (2016). Harmony search to self-configuration of fault tolerant grids for big data. [In:] Z. Kowalczuk, “Advances in Intelligent Systems and Computing”, Vol. 386, p. 411, https://doi.org/10.1007/978-3-319-23180-8_30.

Balicki J., Szymański J., Kępa M., Draszawka K., Korłub W. (2015). Improving effectiveness of svm classifier for large scale data. Proc. of 14th Int. Conf., ICAISC 2015, Zakopane, Poland, June 14-18, Part I, Lecture Notes in Computer Science, Vol. 9119, p. 677, https://doi.org/10.1007/978-3-319-19324-3_60.

Benbouzid B. (2019). To predict and to manage. Predictive policing in the United States. Big Data & Society, January–June, pp. 1–13, https://doi.org/10.1177/2053951719861703.

Brown C. (2011). Technical analysis for the trading professional, Second Edition: Strategies and techniques for today’s turbulent global financial markets. New York: The McGrawHill Companies.

Clohessy, T., Acton, T., Morgan L. (2014). Smart City as a Service (SCaaS): A Future Roadmap for E–Government Smart City Cloud Computing Initiatives. [In:] 7th International Proceedings on Utility and Cloud Computing, pp. 836–841. IEEE/ACM, https://doi.org/10.1109/ucc.2014.136.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B. (2016). The Cityscapes Dataset for Semantic Urban Scene Understanding. [In:] Proc. of the Conf. on Computer Vision and Pattern Recognition, pp. 1-12. IEEE, https://doi.org/10.1109/cvpr.2016.350.

Davis E. P., Karim D. (2008). Comparing early warning systems for banking crises, “Journal of Financial Stability”, Vol. 4, No. 2, https://doi.org/10.1016/j.jfs.2007.12.004.

Gately E. (1999). Neural networks. Financial forecasting and design of transaction system. Warsaw: WIG-Press, s. 232.

German Credit Dataset, http://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29, [Access: 2.09.2015].

Gierusz J., Koleśnik K. (2021). Chart of accounts with commentary. Gdansk: ODDK (in Polish).

Grodzicki J. (2023). The role of organizational climate in cultural transformation, In: Muddassar S., Ul Hassan Shah Wasi (eds.), Organizational culture - cultural change and technology, IntechOpen, ISBN 978-1-83769-319-1, https://doi.org/10.5772/ intechopen.113094.

Hanschel E., Monnin P. (2005). Measuring and forecasting stress in the banking sector: evidence from Switzerland. Investigating the Relationship between the Financial and Real Economy. BIS Papers, No. 22, pp. 435.

Houben, S., Stallkamp J., Salmen J., Schlipsing M., Igel C. (2013). Detection of Traffic Signs in Real-World Images: The German Traffic Sign Detection Benchmark. [In:] International Joint Conference on Neural Networks 2023, vol. 1288, https://doi.org/10.1109/ijcnn.2013.6706807.

Jiang Z, Zhang X, Zhao Y et al. (2023) The impact of urban digital transformation on resource sustainability: evidence from a quasi-natural experiment in China. “Resour Policy” 85:103784, https://doi.org/10.1016/j.resourpol.2023.103784.

Karmaker A.K., Islam S.M.R., Kamruzzaman M. et al (2023). Smart City Transformation: an analysis of Dhaka and its challenges and opportunities. “Smart Cities” 6(2), pp. 1087–1108, https://doi.org/10.3390/smartcities6020052.

Khan M.A., Mehmood A., Kadry S. et al., (2023). TS2HGRNet: a paradigm of two stream best deep learning feature fusion assisted framework for human gait analysis using controlled environment in smart cities. Futur Gener Comput Syst 147, pp. 292–303. https://doi.org/10.1016/j.future.2023.05.011

Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T. (2011). HMDB: A Large Video Database for Human Motion Recognition. [In:] Proceedings of the International Conference on Computer Vision, pp. 2556-2563. IEEE, Barcelona, Spain, p. 2556, https://doi.org/10.1109/iccv.2011.6126543.

Kumar K., Haider T.U. (2021). Enhanced Prediction of Intra-day Stock Market Using Metaheuristic Optimization on RNN-LSTM Network. “New Generation Computing.”, Vol. 39(1), pp. 231-272, https://doi.org/10.1007/s00354-020-00104-0.

Kumar R. (2022). Advances in Deep Learning Applications for Smart Cities. IGI Global, https://doi.org/10.4018/978-1-7998-9710-1.

Letkiewicz, A., Szulc, K. (2022). Towards a Green Smart City: A Case Study of the Tri-City. “Contemporary Economy”, Vol. 13(1), pp. 59-73, https://doi.org/10.26881/wg.2022.1.05.

Llauradó J.M., Pujol F.A., Tomás D. et al. (2023). Study of image sensors for enhanced face recognition at a distance in the Smart City context. Sci Rep 13, pp. 1–13, https://doi.org/10.1038/s41598-023-40110-y.

Martyniuk T., Cygańska M., Żurawik A., Malinowska E. (2021). Cost accounting in healthcare entities, Gdansk: Gdansk University Pub. (in Polish).

Mylonakis J., Diacogiannis G. (2020). Evaluating the likelihood of using linear discriminant analysis as a commercial bank card owners credit scoring model, International Business Research, Vol. 3, No. 2, https://doi.org/10.5539/ibr.v3n2p9.

Nazari M., Alidadi M. (2013). Measuring credit risk of bank customers using artificial neural network. “Journal of Management Research”, Vol. 5, No. 2, p. 322, https://doi.org/10.5296/jmr.v5i2.2899.

Nichols D., Singh S., Lin S., Bhatele A. (2022). A Survey and Empirical Evaluation of Parallel Deep Learning Frameworks. Computer Science,

https://doi.org/10.48550/arXiv.2111.04949.

Pozyskano z: https://ar5iv.org/html/2111.04949 (15.09.2024).

Oet M., Eiben R., Bianco T., Gramlich D., Ong S., Wang J. (2011). SAFE: an early warning system for systemic banking risk. “Proceedings of the 24th Australasian Finance and Banking Conference”, SSRN, https://doi.org/10.2139/ssrn.1914862.

Paes V., de Pessoa C., Pagliusi C.H.M. R.P. et al., (2023). Analyzing the challenges for Future Smart and sustainable cities. Sustain 15, https://doi.org/10.3390/su15107996.

Shouwei L., Mingliang W., Jianmin H. (2013). Prediction of banking systemic risk based on support vector machine, “Mathematical Problems in Engineering”, Vol. 4, p.5, https://doi.org/10.1155/2013/136030.

Yan, Z., Jiang, L., Huang, X. et al. (2023). Intelligent urbanism with artificial intelligence in shaping tomorrow’s smart cities: current developments, trends, and future directions. J Cloud Comp 12, 179, https://doi.org/10.1186/s13677-023-00569-6.

Yobas M.B., Crook J.N., Ross P. (2000). Credit scoring using neural and evolutionary technique. “IMA Journal of Mathematics Applied in Business and Industry”, Vol. 11, https://doi.org/10.1093/imaman/11.2.111.

Yüksel N., Börklü H.R., Sezer H.K., Canyurt O.E. (2023). Review of artificial intelligence applications in engineering design perspective. Eng Appl Artif Intell 118:105697, https://doi.org/10.1016/j.engappai.2022.105697.

Zan H. et al. (2004). Credit rating analysis with support vector machines and neural networks: a market comparative study. Decision Support Systems, Vol. 37, Issue 4, pp. 543-558, https://doi.org/10.1016/s0167-9236(03)00086-1h.

Opublikowane

2025-06-30

Jak cytować

Balicka, H. (2025). NAPĘDZANIE CYFROWEJ TRANSFORMACJI BIZNESU W ZIELONYCH INTELIGENTNYCH MIASTACH ZA POMOCĄ SZTUCZNEJ INTELIGENCJI I PRZETWARZANIA W CHMURZE. Współczesna Gospodarka, 19(1 (43). https://doi.org/10.26881/wg.2025.1.03