Probiotics, prebiotics and intestinal microbiota transfer as therapeutic methods of autism spectrum disorders
Keywords:
intestinal microbiome, autism spectrum, fecal microbiota transfer, probiotics, prebioticsAbstract
In recent years, research on the correlation between the composition of the intestinal microbiome and the functioning of people with autism spectrum disorders has been increasingly observed in the scientific community. Autism Spectrum Disorder (ASD) is defined as a complex, heterogeneous neurodevelopmental disability disorder. Characterized by deficits in social interaction, communication, and stereotyped, repetitive behaviors, activities, and interests. The microbiome is a very diverse ecosystem that consists of 500 to 1000 different species of viruses, bacteria, fungi and protozoa. The species composition of microorganisms in the intestines varies from person to person, and is influenced by the current human health status, diet, age, metabolism, way of birth, geographical origin, stress, medications taken and the composition of the mother's microbiome. Intestinal microorganisms communicate with the central nervous system via the microbiota-gut- brain axis. It has been proven that people with ASD suffer from gastrointestinal disorders and colonic dysbiosis more often than neurotypical people. The scientific reports contained in the article indicate that probiotic therapy, the use of prebiotics and the transfer of intestinal microbiota are effective therapeutic methods for disorders occurring in people with autism spectrum disorders.
Downloads
References
Arakawa H. (2020), From Multisensory Assessment to Functional Interpretation of Social Behavioral Phenotype in Transgenic Mouse Models for Autism Spectrum Disorders, Front. Psychiatry, 11:592408. doi: 10.3389/fpsyt.2020.592408.
Bravo J.A., Forsythe P., Chew M.V., Escaravage E., Savignac H.M., Dinan T.G., Bienenstock J., Cryan J.F. (2011), Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve, Proc. Natl. Acad. Sci. U S A, 20,108 (38): 16050–5. doi: 10.1073/pnas.1102999108.
Brunissen L., Rapoport E., Chawarska K., Adesman A. (2021), Sex Differences in GenderDiverse Expressions and Identities Among Youth with Autism Spectrum Disorder, Autism Res., 14: 143–155.
Collado M.C., Cernada M., Bauerl C., Vento M., Perez-Martinez G. (2012), Microbial ecology and host-microbiota interactions during early life stages, Gut Microbes, 3 (4): 352–65.
Davies C., Mishra D., Eshraghi R.S., Mittal J., Sinha R., Bulut E. (2021), Altering the Gut Microbiome to Potentially Modulate Behavioral Manifestations in Autism Spectrum Disorders: A Systematic Review, Neurosci. Biobehav. Rev., 128: 549–557.
Dinan T.G., Cryan J.F. (2017), The Microbiome-Gut-Brain Axis in Health and Disease. Gastroenterol, Clin. North. Am., 46: 77–89.
Ersöz Alan B., Gülerman F. (2019), The Role of Gut Microbiota in Autism Spectrum Disorder, Turk Psikiyatri Derg, 30: 210–219.
Heiss C.N., Olofsson L.E. (2019), The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system, J Neuroendocrinol, 31, (5):e12684. doi: 10.1111/jne.12684.
Hrdlicka M., Urbanek T., Rotreklova A., Kultova A., Valek O., Dudova I. (2023), Predictors of age at diagnosis in autism spectrum disorders: the use of multiple regression analyses and a classification tree on a clinical sample, Eur Child Adolesc Psychiatry.
Johnson D., Letchumanan V., Thurairajasingam S., Lee L.H. (2020), A Revolutionizing Approach to Autism Spectrum Disorder Using the Microbiome, Nutrients, 12: 1983.
Kang D.W., Adams J.B., Coleman D.M., Pollard E.L., Maldonado J., McDonough-Means S.,Caporaso J.G., Krajmalnik-Brown R. (2019), Long-term benefit of Microbiota Transfer Therapy on autism symptoms and gut microbiota, Sci Rep, 9, 9 (1): 5821. doi: 10.1038/s41598-019-42183-0.
Kang D.W., Adams J.B., Gregory A.C., Borody T., Chittick L., Fasano A., Khoruts A., Geis E., Maldonado J., McDonough-Means S., Pollard E.L., Roux S., Sadowsky M.J., Lipson K.S., Sullivan M.B., Caporaso J.G., Krajmalnik-Brown R. (2017), Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study, Microbiome, 5: 1, 10.
Kogan M.D., Vladutiu C.J., Schieve L.A., Ghandour R.M., Blumberg S.J., Zablotsky B., Perrin J.M., Shattuck P., Kuhlthau K.A., Harwood R.L., Lu M.C. (2018), The Prevalence of ParentReported Autism Spectrum Disorder Among US Children, Pediatrics, 142, (6):e20174161. doi: 10.1542/peds.2017-4161.
Kotlińska A., Huras H. (2017), Źródła i rola mikrobioty mleka kobiecego: przegląd literatury przedmiotu, Zeszyty Naukowe Ochrony Zdrowia, Zdrowie Publiczne i Zarządzanie, 15 (2): 178–180.
Ledford J.R., Gast D.L. (2006), Feeding problems in children with autism spectrum disorders a review, Focus Autism Other Dev Disabil, 21, 3: 153–66.
Lyall K., Schmidt R.J., Hertz-Picciotto I. (2014), Maternal lifestyle and environmental risk factors for autism spectrum disorders, Int J Epidemiol, 43 (2): 443–64.
Madore C., Leyrolle Q., Lacabanne C., Benmamar-Badel A., Joffre C., Nadjar A. (2016), Neuroinflammation in autism: plausible role of maternal inflammation, dietary omega 3, and microbiota, Neural Plast, 359, 7: 209.
Martínez-González A.E., Andreo-Martínez P. (2020), Prebiotics, Probiotics and Fecal Microbiota Transplantation in Autism: A Systematic Review, Revista de psiquiatria y salud Ment., 13: 150–164.
Ostrowska L., Marlicz W., Łoniewski I. (2013), Transplantacja mikroflory jelitowej w leczeniu otyłości i zaburzeń metabolicznych — metoda nadal ryzykowna i niepotwierdzona wynikami badań klinicznych, Forum Zaburzeń Metabolicznych, 4, 4: 161–169.
Peretti S., Mariano M., Mazzocchetti C., Mazza M., Pino M.C., Verrotti Di Pianella A., Valenti M. (2019), Diet: the keystone of autism spectrum disorder?, Nutr Neurosci, 22 (12): 825–839.
Ranjan S., Nasser J. (2015), Nutritional status of individuals with autism spectrum disorders: do we know enough?, Adv Nutr, 15, 6 (4): 397–407.
Rieder R., Wisniewski P.J., Alderman B.L., Campbell S.C. (2017), Microbes and mental health: a review, Brain Behav Immun, 66: 9–17.
Rylaarsdam L., Guemez-Gamboa A. (2019), Genetic Causes and Modifiers of Autism Spectrum Disorder, Front Cell Neurosci, 13: 385.
Schmidt R.J., Hansen R.L., Hartiala J., Allayee H., Schmidt L.C., Tancredi D.J. (2011), Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism, Epidemiology, 22 (4): 476–85.
Schmidt R.J., Tancredi D.J., Ozonoff S., Hansen R.L., Hartiala J., Allayee H. (2012), Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (childhood autism risks from genetics and environment) case-control study, Am J Clin Nutr, 96 (1): 80–89.
Sidrak S., Yoong T., Woolfenden S. (2014), Iron deficiency in children with global developmental delay and autism spectrum disorder, J Paediatr Child Health, 50 (5): 356–61.
Sullivan E.L., Nousen E.K., Chamlou K.A., Grove K.L. (2012), The impact of maternal highfat diet consumption on neural development and behavior of offspring. Int J Obes Suppl, 2: S7–S13.
Sullivan E.L., Nousen L., Chamlou K. (2014), Maternal high fat diet consumption during the perinatal period programs offspring behavior, Physiol Behav, 123 (17): 236–42.
Suren P., Roth C., Bresnahan M., Haugen M., Hornig M., Hirtz D. (2013), Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children, J Am Med Assoc, 309 (6): 570–7.
Valentino F., Bruno L., Doddato G., Giliberti A., Tita R., Resciniti S. (2021), Exome Sequencing in 200 Intellectual Disability/Autistic Patients: New Candidates and Atypical Presentations, Brain Sci, 11: 936.
Xiang X., Yang T., Chen J., Chen L., Dai Y., Zhang J., Li L., Jia F., Wu L., Hao Y., Ke X., Yi M., Hong Q., Chen J., Fang S., Wang Y., Wang Q., Jin C., Li T. (2023), Association of feeding patterns in infancy with later autism symptoms and neurodevelopment: a national multicentre survey, BMC Psychiatry, 23 (1): 174.
Yang Y., Tian J., Yang B. (2018), Targeting gut microbiome: a novel and potential therapy for autism, Life Sci, 194: 111–19.