Wybrane rośliny lecznicze wspomagające odporność w walce z COVID-19: II. Rośliny o potwierdzonym działaniu leczniczym

Autor

  • Vladyslava Dubanska Uniwersytet Gdański
  • Agnieszka Kowalkowska Uniwersytet Gdański

DOI:

https://doi.org/10.26881/tutg.2022.3.11

Słowa kluczowe:

Cinchona officinalis, Cistus incanus, Curcuma longa, Glycyrrhiza glabra, Nigella sativa, Ocimum sanctum, Withania somnifera

Downloads

Download data is not yet available.

Bibliografia

Bailly, C., Vergoten, G., 2020. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacology & Therapeutics, 214, 107618.

Balkrishna, A., Pokhrel, S., Singh, J., Varshney, A., 2020. Withanone from Withania somnifera may inhibit novel coronavirus (COVID-19) entry by disrupting interactions between viral S-protein receptor binding domain and host ACE2 receptor. Drug Design, Development and Therapy, 15: 1111-1133.

Burnie, G., 2005. Botanica: ilustrowana, w alfabetycznym układzie, opisuje ponad 10000 roślin ogrodowych, Niemcy: Konemann, Tandem Verlag GmbH.

Dar, P.A, Singh, L.R., Kamal, M.A., Dar, T.A., 2016. Unique medicinal properties of Withania somnifera: Phytochemical constituents and protein component. Current Pharmaceutical Design, 22(5), 535- 540.

Ehrhardt, C., Hrincius, E.R., Korte, V., Mazur, I., Droebner, K., Poetter, A., Dreschers, S., Schmolke, M., Planz, O., Ludwig, S., 2007. A polyphenol rich plant extract, CYSTUS052, exerts anti influenza virus activity in cell culture without toxic side effects or the tendency to induce viral resistance. Antiviral Research, 76(1), 38-47.

Falchi, A., Paolini, J., Desjobert, J.M., Melis, A., Costa, J., Varesi, L., 2009. Phylogeography of Cistus creticus L. on Corsica and Sardinia inferred by the trnL-F and rpL32-trnL sequences of cpDNA. Moleculer Phylogenetics and Evolution, 52(2), 538-543.

Gaurav, N., Kumar, A., Tyagi, M., Kumar, D., Chauhan, U.K., Singh, A.P., 2015. Morphology Of Withania Somnifera (Distribution, Morphology, Phytosociology of Withania somnifera L. Dunal). Journal of Current Science Research, 1(7), 164-173.

Gautam, S., Gautam, A., Chhetri, S., Bhattarai, U., 2020. Immunity Against COVID-19: Potential Role of Ayush Kwath. Journal of Ayurveda and Integrative Medicine, 100350.

Goel, A., Kunnumakkara, A.B.,Aggarwal, B. B., 2008. Curcumin as “Curecumin”: from kitchen to clinic. Biochemical pharmacology, 75(4), 787-809.

Islam, M.T., Khan, M.R., Mishra, S.K., 2019. An updated literature-based review: Phytochemistry, pharmacology and therapeutic promises of Nigella sativa L. Oriental Pharmacy and Experimental Medicine, 19, 115-129.

Jain, N.K., Agrawal, A., Kulkarni, G. T., Tailang, M., 2022. Molecular docking study on phytoconstituents of traditional ayurvedic drug tulsi (Ocimum sanctum Linn.) against Covid-19 Mpro enzyme: an in silico study. International Journal of Pharmacy and Pharmaceutical Sciences, 44-50.

Kalus, U., Grigorov, A., Kadecki, O., Jansen, J.P., Kiesewetter, H., Radtke, H., 2009. Cistus incanus (CYSTUS052) for treating patients with infection of the upper respiratory tract. A prospective, randomised, placebo-controlled clinical study. Antiviral Research, 84(3), 267-271.

Kaur, R., Kaur, H., Dhindsa, A., 2013. Glycyrrhiza glabra: A phytopharmacological review. International Journal of Pharmaceutical Sciences and Research, 4(7), 2470-2477.

Klebańska, J., 2017. Porównanie składu chemicznego produktów Cistus × incanus L. dostępnych komercyjnie. Praca magisterska, promotor: Fecka I. Wrocław: Wydział Farmaceutyczny z Oddziałem Analityki Medycznej, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu.

Koshak, A.E., Koshak, E.A., 2020. Nigella sativa L as a potential phytotherapy for coronavirus disease 2019: A mini review of in silico studies. Current Therapeutic Research, 93, 100602.

Kubica, P., Ekiert, H., Ekiert, R., Szopa, A., 2016. Gatunki rodzaju Cistus sp. – taksonomia, występowanie, skład chemiczny, aplikacje terapeutyczne i badania biotechnologiczne. Postępy Fitoterapii, 17(3), 179- 188.

Kushwaha, P.P., Singh, A.K., Prajapati, K.S., Shuaib, M., Gupta, S., Kumar, S., 2021. Phytochemicals present in Indian ginseng possess potential to inhibit SARSCoV-2 virulence: A molecular docking and MD simulation study. Microbial Pathogenesis, 157, 104954.

Leonti, M., Casu, L., de Oliveira Martins, D.T., Rodrigues, E., Benitez, G., 2020. Ecological Theories and Major Hypotheses in Ethnobotany: Their Relevance for Ethnopharmacology and Pharmacognosy in the Context of Historical Data. Revista Brasileira Farmacognosia, 30, 451-466.

Mao, Q.-Q., Xu, X.-Y., Cao, S.-Y., Gan, R.-Y., Corke, H., Beta, T., Li, H.-B., 2019. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods, 8(6), 185.

Munien, P., Naidoo, Y., Naidoo, G., 2015. Micromorphology, histochemistry and ultrastructure of the foliar trichomes of Withania somnifera (L.) Dunal (Solanaceae). Planta, 242(5), 1107-1122.

Newerli-Guz, J, Erdman, M., 2015. Ocena wybranych wyróżników jakościowych czystka (róży skalnej) Cistus incanus L. Problemy higieny i epidemiologii, 96(3), 693-696.

Nugraha, R.V., Ridwansyah, H., Ghozali, M., Khairani, A.F., Atik, N., 2020. Traditional herbal medicine candidates as complementary treatments for COVID19: a review of their mechanisms, pros and cons. Evidence-Based Complementary and Alternative Medicine, 2020, Article ID 2560645, 12 pages, 2020. https://doi.org/10.1155/2020/2560645.

Omar, H.R., Komarova, I., El-Ghonemi, M., Fathy, A., Rashad, R., Abdelmalak, H.D., Yerramadha, M.R., Ali, Y., Helal, E., Camporesi, E.M., 2012. Licorice abuse: time to send a warning message. Therapeutic Advances in Endocrinology and Metabolism, 3(4), 125-138.

Paolini, J., Falchi, A., Quilichini, Y., Desjobert, J.M., de Cian, M.C., Varesi, L., Costa, J., 2009. Morphological, chemical and genetic differentiation of two subspecies of Cistus creticus L. (C. creticus subsp. eriocephalus and C. creticus subsp. corsicus). Phytochemistry, 70(9), 1146-1160.

Papaefthimiou, D, Papanikolaou, A, Falara, V, Givanoudi, S, Kostas, S, Kanellis, A.K., 2014. Genus Cistus: A model for exploring labdane-type diterpenes’ biosynthesis and a natural source of high value products with biological, aromatic, and pharmacological properties. Frontiers in Chemistry, 2, 35.

Rebensburg, S., Helfer, M., Schneider, M., Koppensteiner, H., Eberle, J., Schindler, M., Schindler, M., Gurtler, L., Brack-Werner, R., 2016. Potent in vitro antiviral activity of Cistus incanus extract against HIV and filoviruses targets viral envelope proteins. Scientific Reports, 6, 20394.

Robert, S., 2016. Cistinae: The Natural Order of Cistus, or Rock-Rose; Illustrated by Coloured Figures & Descriptions of All the Distinct Species. Sydney: Wentworth Press, 35-112.

Sanghvi, K., Chandrasheker, K.S., Pai, V., 2020. Review on Curcuma longa: Ethnomedicinal uses, pharmacological activity and phytochemical constituents. Research Journal of Pharmacy and Technology, 13(8), 3983-3986.

Somjen, D., Katzburg, S., Vaya, J., Kaye, A.M., Hendel, D., Posner, G.H., Tamir, S., 2004. Estrogenic activity of glabridin and glabrene from licorice roots on human osteoblasts and prepubertal rat skeletal tissues. The Journal of Steroid Biochemistry and Molecular Biology, 91(4-5), 241-246.

Standley, P., 1931. The Rubiaceae of Ecuador. Botanical Series, 7(2), 197-198.

Standley, P.,1936. Rubiaceae in Macbride. Flora of Peru, 13, 30-31.

Starzec, A., Włodarczyk, M., Urbanowicz, I., Fecka, I., 2021. Charakterystyka, potencjał leczniczy i prozdrowotny Cistus × incanus L. Farmacja Polska, 76(11), 647-664.

Subhabrata, P., Chakraborty, S., Anand, U., Dey, S., Samapika, N., Mimosa, G., Suchismita, C.S., Manoj, T.P., Kandimalla, R., Proćków, J., Abhijit, D., 2021. Withania somnifera (L.) Dunal (Ashwagandha): A comprehensive review on ethnopharmacology, pharmacotherapeutics, biomedicinal and toxicological aspects, Biomedicine & Pharmacotherapy, 143, 112175.

Tagde, P., Tagde, S., Tagde, P., Bhattacharya, T., Monzur, SM., Rahman, MH., Otrisal, P., Behl, T., Hassan, SS., Abdel-Daim, MM., Aleya, L., Bungau, S., 2021. Nutraceuticals and Herbs in Reducing the Risk and Improving the Treatment of COVID-19 by Targeting SARS-CoV-2. Biomedicines, 9(9), 1266.

Tamir, S., Eizenberg, M., Somjen, D., Izrael, S., Vaya, J., 2001. Estrogen-like activity of glabrene and other constituents isolated from licorice root. The Journal of Steroid Biochemistry and Molecular Biology, 78(3), 291-298.

Tembhurne, S., Feroz, S., More, B., Sakarkar, D., 2014. A review on therapeutic potential of Nigella sativa (kalonji) seeds. The Journal of Medicinal Plants Research, 8(3), 167-177.

Traeder, J.-M., 2021a. Cistus× Incanus L. Pandalis is Highly Effective against Delta Variant of SARS-CoV2 in Vitro. Journal of Diseases and Medicinal Plants, 7(3), 82-86.

Traeder J.-M., 2021b. Extract from Cistus × Incanus L. Pandalis also Effective Against “British” Alpha (B.1.1.7) and “South African” Beta (B.1.351) SARS-CoV-2 Variants. Journal of Diseases and Medicinal Plants, 2, 44-47.

Vaduganathan, M., Vardeny, O., Michel, T., McMurray, J.J.V., Pfeffer, M.A., Solomon, S.D., 2020. Renin-Angiotensin-Aldosterone System Inhibitors in Patients with COVID-19. The New England Journal of Medicine, 382, 1653-1659.

Weng, J.K., 2020. Plant Solutions for the COVID-19 Pandemic and Beyond: Historical Reflections and Future Perspectives. Molecular Plant, 13, 803-807.

Źródła internetowe

Cistus incanus, autor zdjęcia: ©2008 Neal Kramer (za pozwoleniem autora), https://calphotos.berkeley.edu/cgi/img_query?query_src=ucjeps&enlarge=0000+0000+1208+1780 [dostęp: 10.09.2022]

Różański H., Rozmyślania nad czystkiem – Cistus, https://rozanski.li/3389/rozmyslania-nad-czystkiem-cistus/ [dostęp: 09.09.2022]

Germplasm Resources Information Network (GRIN), https://npgsweb.ars-grin.gov/gringlobal/taxonomydetail.aspx?12676 [dostęp: 20.11.2014]

Curcuma longa L. https://www.nparks.gov.sg/florafaunaweb/flora/1/9/1904 [Dostęp: 09.09.2022]

Zbigniew Podbielkowski: Słownik roślin użytkowych. Warszawa: PWRiL, 1989. https://pl.wikipedia.org/wiki/Specjalna:Ksi%C4%85%C5%BCki/8309002564 [dostęp: 20.11.2014]

Ostryż długi, autor zdjęcia: H. Zell https://pl.wikipdia.org/wiki/Ostry%C5%BC_d%C5%82ugi#/m edia/Plik:Curcuma_longa_001.JPG [dostęp: 09.09.2022]

Germplasm Resources Information Network (GRIN), https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch.aspx?language=en [dostęp: 22.02.2010]

Atlas Roślin, autorzy zdjęć: A: Yuriy Danilevsky, B. Alcibiades https://atlas.roslin.pl/plant/7092 [dostęp: 08.09.2022]

Licorice Root https://nccih.nih.gov/health/licoriceroot [Dostęp: 20.12.2017]

Atlas Roślin, autor zdjęcia: Paweł Kalinowski, https://atlasroslin.pl/gatunki/Nigella_sativa.htm [dostęp: 08.09.2022]

Germplasm Resources Information Network (GRIN), https://npgsweb.ars-grin.gov/gringlobal/taxonomydetail.aspx?25337 [dostęp: 28.12.2014]

Nigella sativa, autor zdjęcia: Gaurav Dhwaj Khadka, https://commons.wikimedia.org/wiki/File:Nigella_sativa_seeds.jpg [dostęp: 08.09.2022]

Bazylia święta - Ocimum sanctum Linne w fitoterapii współczesnej, https://rozanski.li/966/bazylia-swieta-ocimum-sanctum-linne-w-fitoterapiiwsplczesnej/ [dostęp: 08.09.2022]

Ocimum sanctum L.; za: https://www.plantagosklep.pl/blog/tulasi/ [dostęp: 08.09.2022]

Bazylia święta - Ocimum sanctum Linne w fitoterapii współczesnej, https://rozanski.li/966/bazylia-swieta-ocimum-sanctum-linne-w-fitoterapiiwsplczesnej/ [dostęp: 11.09.2022]

Ashwagandha – właściwości lecznicze i działanie, https://www.drmax.pl/blog-porady/ashwagandha-wlasciwosci-lecznicze [dostęp: 12.09.2022]

Pobrania

Opublikowane

2022-12-19

Jak cytować

Dubanska, V., & Kowalkowska, A. (2022). Wybrane rośliny lecznicze wspomagające odporność w walce z COVID-19: II. Rośliny o potwierdzonym działaniu leczniczym. Tutoring Gedanensis, 7(3), 99–110. https://doi.org/10.26881/tutg.2022.3.11

Numer

Dział

Artykuły